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Preface

This book is designed to help students learn precalculus step by step and to 
provide instructors with a ready-to-go resource for teaching. The concise, work-
along format uses an active-learning approach that builds problem-solving skills 
and critical thinking. It covers all essential precalculus topics: functions, polyno
mial and rational functions, exponential and logarithmic functions, trigonometry 
(including identities, the laws of sines and cosines), conic sections, sequences, and 
the binomial theorem.

The book works well for a one-semester precalculus course and can also serve as a 
review before starting calculus and is suitable as a primary text or as a supplement 
for active learning in class.

How Each Section is Organized

Key Definitions or Properties: Each topic begins with essential definitions and 
properties that form the foundation for that follows.

Learn Through Examples: Most examples are partially completed and require 
students to actively engage by filling in the missing steps.

Special Boxes: Different types of notes are boxed for easy identification.

• Important Notes (boxed with ) highlight information you must remember.

• Informational Notes (boxed with ) provide additional context or explanations.

• Tips (boxed with ) offer helpful advice or strategies for solving problems.

Key Mathematical Statements: Theorems, propositions, and results are boxed 
and highlighted for quick reference.

Exercises: Each section includes practice problems with answers for self-check
ing. Students are encouraged to attempt problems independently first.

A Note About This Book

Even with careful preparation, there will still be errors. If you find any mistakes, 
please let me know. Your comments, corrections, and suggestions will help make 
future editions better.
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Chapter 1 Introduction to Functions

 1.1 Basic Concepts

Definition 1.1.1 (Basic Concepts of Functions)

A relation is a set of ordered pairs. The set of first components of the ordered pairs is 
called the domain, and the set of second components is called the range.

A function is a relation that assigns each element in the domain to a unique element in 
the range.

A value in the domain is often represented by the letter 𝑥, called an independent 
variable. A value in the range is often represented by the letter 𝑦, called a dependent 
variable. If a function has 𝑥 as the independent variable and 𝑦 as the dependent variable, 
we often say that 𝑦 is a function of 𝑥.

♣︎

Example 1.1.1.  Consider the relation
{(1, 2), (2, 4), (3, 6), (4, 8), (5, 10)}.

1) Find the domain and the range.

2) Determine if this relation is a function.

Solution.  The domain is
{1, 2, 3, , , }.

The range is
{2, 4, 6, , , }.

The relation  a function because for each element in the domain has a unique 

associated element in the range.

Example 1.1.2.  Consider relation between products and prices in a grocery store.

1) Is price a function of product? If yes, what is the independent variable and what is the 
dependent variable?

2) Is product a function of price? If yes, what is the independent variable and what is the 
dependent variable?

Solution. 

1) Because every product has a unique price, the price is a function of . The 

independent variable is product and the dependent variable is .

2) Because multiple products may have the same price, the product  a function 

of price?
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Chapter 1 Introduction to Functions 1.1 Basic Concepts

Definition 1.1.2 (Function Notation)

A function is usually represented by a letter, such as 𝑓 , and defined by an equation like 
𝑦 = 𝑓(𝑥). In this equation, 𝑓(𝑥) is called function notation and is read as “𝑓  of 𝑥” or “𝑓  
at 𝑥.” The notation 𝑓(𝑥) represents the output of the function 𝑓  for a given input 𝑥.

♣︎

Example 1.1.3.  A function 𝑁 = 𝑓(𝑦) gives the number of police officers, 𝑁 , in a town in 
year 𝑦. What does 𝑓(2005) = 300 represent?

Solution.  From the definition of function notation, the number 2005 is the input, the 
number 300 is the . The equality means that in 2005, the number of police officers 

is .

Example 1.1.4.  Consider the function 𝑓(𝑥) = 𝑥2 + 3𝑥 − 4. Find the values of the following 
expressions.

1) 𝑓(2) 2) 𝑓(𝑎) 3) 𝑓(𝑎 + ℎ) 4)
𝑓(𝑎+ℎ)−𝑓(𝑎)

ℎ

Solution. 

1) 𝑓(2) = 22 + 3( ) − 4 = 6.

2) 𝑓(𝑎) = 2 + 3𝑎 − 4.

3) 𝑓(𝑎 + ℎ) = ( )2 + 3( ) − 4 = 𝑎2 + + ℎ2 + 3𝑎 + − 4.

4)

𝑓(𝑎 + ℎ) − 𝑓(𝑎)
ℎ

=
(𝑎2 + 2𝑎ℎ + ℎ2 + 3𝑎 + 3ℎ − 4) − (𝑎2 + 3𝑎 − 4)

ℎ

= + ℎ2 + 3ℎ
ℎ

= 2𝑎 + .

Example 1.1.5.  Consider the function 𝑓(𝑥) = 𝑥2 − 2𝑥. Find all 𝑥 values such that 𝑓(𝑥) = 3.

Solution.  Replacing 𝑓(𝑥) by 3 in the defining equation, we have the equation

𝑥2 − 2𝑥 = 3.
Solve the equation:

The values of 𝑥 that satisfy the equation are 3 and .

Example 1.1.6.  Express the relationship defined by the function 2𝑥 − 𝑦 − 3 = 0 as a 
function 𝑦 = 𝑙(𝑥).

Solution.  To find 𝑙(𝑥), solve the equation 2𝑥 − 𝑦 − 3 = 0 for 𝑦:
𝑦 = .

Thus, the function is 𝑙(𝑥) = − 3.
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Chapter 1 Introduction to Functions 1.1 Basic Concepts

Example 1.1.7.  Consider the function 𝑓(𝑥) defined by a graph below.

1) Find 𝑓(−1). 2) Find all 𝑥 such that 𝑓(𝑥) = 1.

−2 −1 1 2 3 4 𝑥
−1

1

2

3

4

5
𝑦

0

𝑦 = 𝑓(𝑥)

Solution. 

1) 𝑓(−1) is the 𝑦-coordinate of the point 
on the graph where 𝑥 = −1. From the 
graph, we have

𝑓(−1) = .

2) To find all 𝑥 such that 𝑓(𝑥) = 3, we look 
for points on the graph where the 𝑦-
coordinate is 3. From the graph, we 
see that 𝑓(𝑥) = 3 when 𝑥 = 0 and 𝑥 =

.

Definition 1.1.3 (One-to-One Function)

A function is a one-to-one function (also known as an bijective function) if every value 
in its range corresponds to exactly one value in the domain.

♣︎

Example 1.1.8.  Is the function 𝑓(𝑥) = 𝑥2 one-to-one?

Solution.  Because different input values, for example 𝑥 = 2 and 𝑥 = −2, produce the same 
output value 𝑓(2) = 𝑓(−2) = , the function 𝑓   one-to-one.

Example 1.1.9.  Is the area enclosed by a circle a function of its radius? If yes, is the 
function one-to-one?

Solution.  The area 𝐴 of a circle is given by the formula 𝐴 = 𝜋𝑟2, where 𝑟 is the radius and 
it is a nonnegative number. Since each radius 𝑟 corresponds to exactly one area 𝐴, the 
area  a function of the radius. Moreover, the domain of the function is 𝑟 ≥ 0.

Since the radius must be nonnegative, solving 𝑟 in terms of 𝐴 gives a unique value of 𝑟 =
 for each area 𝐴. Thus, the function is  one-to-one.

Horizontal and Vertical Line Test

A graph is a function if very vertical line crosses the graph at most once. This method is 
known as the vertical line test.

A function is an one-to-one if very horizontal line crosses the graph at most once. This 
method is known as the horizontal line test.
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Chapter 1 Introduction to Functions 1.1 Basic Concepts

Example 1.1.10.  Determine if the graph defines a function. If so, is it a one-to-one 
function?

−4 −3 −2 −1 1 2 3 4 𝑥

−4

−3

−2

−1

1

2

3

4

𝑦

0

(a)

1 2 3 4 5 6 7 8 𝑥

−4

−3

−2

−1

1

2

3

4

𝑦

0

(b)

−4 −3 −2 −1 1 2 3 4 𝑥

−4

−3

−2

−1

1

2

3

4

𝑦

0

(c)

Solution. 

−4 −3 −2 −1 1 2 3 4 𝑥

−4

−3

−2

−1

1

2

3

4

𝑦

0

(a)

1 2 3 4 5 6 7 8 𝑥

−4

−3

−2

−1

1

2

3

4

𝑦

0

(b)

−4 −3 −2 −1 1 2 3 4 𝑥

−4

−3

−2

−1

1

2

3

4

𝑦

0

(c)

From the vertical line test and horizontal line test:

(a) The graph  a function. The function is  one-to-one.

(b) The graph  a function. The function is  one-to-one.

(c) The graph  a function. The function is  one-to-one.
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Chapter 1 Introduction to Functions Exercises

Exercises

🖊️ Exercise 1.1.1.  Consider the function 𝑓(𝑥) = 2𝑥2 + 𝑥 − 3. Find the values of the following 

expressions.

1) 𝑓(−1) 2) 𝑓(𝑎) 3) 𝑓(𝑎 + ℎ) 4) 𝑓(𝑎+ℎ)−𝑓(𝑎)
ℎ

Answer: 1) 𝑓(−1) = −2 2) 𝑓(𝑎) = 2𝑎2 + 𝑎 − 3 3) 𝑓(𝑎 + ℎ) = 2𝑎2 + 4𝑎ℎ + 2ℎ2 + 𝑎 + ℎ − 3 4)
𝑓(𝑎+ℎ)−𝑓(𝑎)

ℎ = 4𝑎 + 2ℎ + 1

🖊️ Exercise 1.1.2.  Consider the function 𝑓(𝑥) = −𝑥2 − 4𝑥. Find all 𝑥 values such that 𝑓(𝑥) = 3.

Answer: The values of 𝑥 that satisfy the equation are −1 and −3.
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Chapter 1 Introduction to Functions Exercises

🖊️ Exercise 1.1.3.  Express the relationship defined by the function 3𝑥 − 2𝑦 − 6 = 0 as a function 

𝑦 = 𝑙(𝑥).

Answer: 𝑙(𝑥) = 3
2𝑥 − 3.

🖊️ Exercise 1.1.4.  Express the relationship defined by the equation 8𝑥 − 𝑦3 = 0 as a function 𝑦 =
𝑓(𝑥). Is 𝑓 a one-to-one function?

Answer: 𝑓(𝑥) = 3
√

8𝑥. The function 𝑓  is one-to-one.

🖊️ Exercise 1.1.5.  Consider the function 𝑓(𝑥) defined by a graph below.

1) Find 𝑓(1). 2) Find all 𝑥 such that 𝑓(𝑥) = 0.

−3 −2 −1 1 2 3 𝑥

−3

−2

−1

1

2

3

𝑦

0

𝑦 = 𝑓(𝑥)

Answer: 1) 𝑓(1) = 3. 2) The values of 𝑥 such that 𝑓(𝑥) = 0 are −1, 0, and 2.
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Chapter 1 Introduction to Functions 1.2 Domains and Ranges

 1.2 Domains and Ranges

Definition 1.2.1 (Domain and Range)

The domain of a function 𝑓  consists of possible input values 𝑥. Or equivalently, the 
domain consists of all 𝑥 values except those that will make the function is undefined.

The range of a function 𝑓  consists of all possible output values 𝑦. Equivalently, the range 
consists of 𝑦 value such that equation 𝑦 = 𝑓(𝑥) has a solution 𝑥.

♣︎

Example 1.2.1.  Find the domain of the function

𝑓(𝑥) = 𝑥 + 1
2 − 𝑥

.

Solution.  The function is undefined when the denominator is equal to zero. So, we set 
the denominator equal to zero and solve for 𝑥:

2 − 𝑥 = 0
𝑥 = .

Therefore, the domain of the function is the set of all real numbers except 𝑥 = .

Example 1.2.2.  Find the domain of the function

𝑓(𝑥) =
√

7 − 𝑥.

Solution.  The square root 
√

7 − 𝑥 is real if the radicand 7 − 𝑥 is nonnegative, that is 7 −
𝑥 ≥ 0. Solve the inequality:

7 − 𝑥 ≥ 0
−𝑥 ≥

𝑥 7.
Therefore, the domain of the function consists of all real numbers 𝑥 such that 𝑥 ≤ 7.

Set-builder and Interval Notation

Set-builder notation specifies a set of elements that satisfy a given condition. It takes 
the form {𝑥 | statement about x}, read as “the set of all 𝑥 such that the statement about 𝑥 
is true.”

Interval notation describes sets of real numbers between two endpoints, which may 
or may not be included. Brackets or parentheses are placed around the endpoints, 
separated by a comma: a square bracket indicates inclusion, and a parenthesis indicates 
exclusion.

For example:
• [𝑎, 𝑏] represents all real numbers from 𝑎 to 𝑏, including both endpoints.
• (𝑎, 𝑏] represents all real numbers from 𝑎 to 𝑏, excluding 𝑎 but including 𝑏.
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Chapter 1 Introduction to Functions 1.2 Domains and Ranges

Example 1.2.3.  Find the domain of the function 𝑓(𝑥) =
√

𝑥+2
𝑥−1 . Write your answer in set-

builder notation and interval notation.

Solution.  The function is undefined when the denominator is equal to zero or when the 
radicand is negative. So the domain is determined by the two conditions:

𝑥 − 1 ≠ 0 and 𝑥 + 2 ≥ 0
𝑥 ≠ and 𝑥 ≥ .

Therefore, the domain of the function in set-builder notation is
{𝑥 | 𝑥 ≥ −2 and 𝑥 ≠ 1}.

Since 1 ≥ −2, the domain can be expressed in interval notation as
[−2, ) ∪ (1, ).

Example 1.2.4.  Find the domain and range of the function 𝑓  whose graph is shown in 
the following figure.

−4 −3 −2 −1 1 2 3 𝑥

−3

−2

−1

1

2

3

4

𝑦

0

Solution.  Moving a vertical line from left 
to right, it crosses the graph starting from 
𝑥 = −3 and up to 𝑥 = 1.5. In interval nota
tion, the domain is

[ , 1.5).
Moving a horizontal line from bottom to 
top, it crosses the graph starting from 𝑦 =
−2 and up to 𝑦 = 3. In interval notation, 
the range is

[−2, ).

Example 1.2.5.  Find the domain and range of the function

𝑓(𝑥) = 3
√

𝑥 + 2.

Solution.  The square root 
√

𝑥 + 2 is real if the radicand 𝑥 + 2 is nonnegative, that is 𝑥 +
2 ≥ 0. Solve the inequality:

𝑥 + 2 ≥ 0
𝑥 ≥ .

Therefore, the domain of the function in interval is
[−2, ).

When 
√

𝑥 + 2 is real, it is nonnegative, that is 
√

𝑥 + 2 ≥ 0. Thus,

𝑓(𝑥) = 3
√

𝑥 + 2 ≥ 3 ⋅ 0 = 0.
Therefore, the range of the function in interval notation is

[0, ).
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Chapter 1 Introduction to Functions 1.2 Domains and Ranges

Definition 1.2.2 (Piecewise Function)

A piecewise function is a function defined by multiple sub-functions, each applying to 
a certain sub-interval of the main function’s domain.

♣︎

Example 1.2.6.  Consider the piecewise function

𝑓(𝑥) =
{

−2𝑥 − 3 if 𝑥 ≤ −1

−𝑥2 if −1 < 𝑥 < 1
−2𝑥 + 4 if 1 ≤ 𝑥.

1) Sketch the graph 2) Find 𝑓(−4) 3) Find 𝑓(2)

Solution. 

1) To sketch the graph, we plot each piece 
of the function over its corresponding 
interval.

2) For 𝑓(−4), since −4 ≤ −1, we use the 
first piece of the function:
𝑓(−4) = 2(−4) − 3 = −8 − 3 = .

1) For 𝑓(2), since 2 ≥ 1, we use the third 
piece of the function:
𝑓(2) = −2(2) + 4 = −4 + 4 = .

−4 −3 −2 −1 1 2 3 4 𝑥

−4

−3

−2

−1

1

2

3

4

𝑦

0

Example 1.2.7.  Consider the piecewise function

𝑓(𝑥) =
{

𝑥2 − 3 if 𝑥 ≥ −2

−2 if −4 ≤ 𝑥 < −2
5 − 2𝑥 if 𝑥 < −4

1) Find 𝑓(𝑓(−4)) 2) Find 𝑓(𝑓(−5)
−5 )

Solution. 
𝑓(−4) = .

Next, we find 𝑓(−2). Since −2 ≥ −2, we use the first piece of the function:

𝑓(−2) = (−2)2 − 3 = .
𝑓(−5) = 5 − 2(−5) = .

𝑓(−3) = .
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Chapter 1 Introduction to Functions Exercises

Exercises

🖊️ Exercise 1.2.1.  Find the domain of the function.

1) 𝑓(𝑥) = 1+4𝑥
2𝑥−1 2) 𝑓(𝑥) =

√
5 + 2𝑥 3) 𝑓(𝑥) =

√
𝑥+1

𝑥−1 4) 𝑓(𝑥) = 𝑥−2
𝑥2+7𝑥−44

Answer: 1) (−∞, 1
2) ∪ (1

2 , ∞). 2) [−5
2 , ∞). 3) [−1, 1) ∪ (1, ∞). 4) (−∞, −11) ∪ (−11, 4) ∪ (4, ∞).

🖊️ Exercise 1.2.2.  Find the domain and range of each of the following functions. Write your answer 

in set-builder notation and interval notation.

1) 𝑓(𝑥) = 3
𝑥−2 2) 𝑓(𝑥) = −2

√
𝑥 + 4

Answer: 1) Domain: (−∞, 2) ∪ (2, ∞). Range: (−∞, 0) ∪ (0, ∞). 2) Domain: [−4, ∞]. Range: (−∞, 0].
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🖊️ Exercise 1.2.3.  Consider the piecewise function

𝑓(𝑥) =
{

−2𝑥 + 5 if 𝑥 < −2

𝑥2 − 1 if −2 ≤ 𝑥 ≤ 2
3 − 2𝑥 if 2 < 𝑥.

1) Sketch the graph. 2) Find 𝑓(−4). 3) Find 𝑓(2). 4) Find 𝑓(𝑓(3)). 5) Find 𝑓(𝑓(0) + 5).

Answer: 1)

−6−5−4−3−2−1 1 2 3 4 5 6 𝑥

−4
−3
−2
−1

1
2
3
4
5
6
7
8

𝑦

0

2) 𝑓(−3) = 5. 3) 𝑓(2) = −1. 4) 𝑓(𝑓(3)) = 2. 5) 𝑓(𝑓(0) + 5) = −3.
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 1.3 Monotonicity and Extrema

Definition 1.3.1 (Rate of Changes)

The average rate of change of a function 𝑓  over an interval [𝑎, 𝑏] is defined as

Average Rate Of Change = 𝑓(𝑏) − 𝑓(𝑎)
𝑏 − 𝑎

.

By taking 𝑥 = 𝑎 and ℎ = 𝑏 − 𝑎, the average of rate of change is the same the difference 
quotient of a function 𝑓  which is defined as

Difference Quotient = 𝑓(𝑥 + ℎ) − 𝑓(𝑥)
ℎ

.
♣︎

Remark

Geometrically, the average rate of change is the slope of secant line passing through 
(𝑎, 𝑓(𝑎)) and (𝑏, 𝑓(𝑏)).

When ℎ goes to 0, the difference quotient represents the slope of the tangent line passing 
through (𝑥, 𝑓(𝑥)).

Example 1.3.1.  After picking up a friend who lives 10 miles away, Anna records her 
distance from home over time. The values are shown in Table. Find her average speed 
over the first 6 hours.

𝑡 (hours) 0 1 2 3 4 5 6 7

𝐷(𝑡) (miles) 10 55 90 153 214 240 292 300

Solution.  Anna’s average speed over the first 6 hours is given by the average rate of 
change of 𝐷(𝑡) over the interval [0, 6]:

𝐷(6) − 𝐷(0)
6 − 0

= −
6

= 290
6

≈ miles per hour.

Example 1.3.2.  Find the average rate of change of 𝑓(𝑥) = 𝑥2 − 1
𝑥  over the interval [1, 2].

Solution.  The average rate of change of 𝑓  over the interval [1, 2] is
𝑓(2) − 𝑓(1)

2 − 1
= −

1
= .

Example 1.3.3.  Find the average rate of change of 𝑔(𝑡) = 𝑡2 + 3𝑡 + 1 on the interval [0, 𝑎]. 
The answer will be an expression involving 𝑎.

Solution.  The average rate of change of 𝑔 over the interval [0, 𝑎] is
𝑔(0) − 𝑔(𝑎)

0 − 𝑎
= 1 − ( )

−𝑎
==

−(𝑎2 + 3𝑎)
−𝑎

= .
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Chapter 1 Introduction to Functions 1.3 Monotonicity and Extrema

Example 1.3.4.  Find the difference quotient of 𝑓(𝑥) =
√

𝑥 at 𝑥 = 𝑎. Make sure that the 
numerator is rationalized in your answer.

Solution.  The difference quotient of 𝑓  at 𝑥 = 𝑎 is

𝑓(𝑎 + ℎ) − 𝑓(𝑎)
ℎ

=
√ −

√
𝑎

ℎ
.

To rationalize the numerator, we multiply the numerator and denominator by the conju
gate of the numerator:

√
𝑎 + ℎ −

√
𝑎

ℎ
·

√
𝑎 + ℎ +

√
𝑎 = ( ) − 𝑎

ℎ(
√

𝑎 + ℎ +
√

𝑎)
= ℎ

ℎ(
√

𝑎 + ℎ +
√

𝑎)
= .

Definition 1.3.2 (Monotonicity and Extrema)

A function 𝑓  is increasing over an interval (𝑎, 𝑏) if 
𝑓(𝑥2) > 𝑓(𝑥1) for any 𝑥1 < 𝑥2 in (𝑎, 𝑏). Equivalently, 
𝑓  is increasing over (𝑎, 𝑏) if the average rate of 
change is positive over any subinterval (𝑥1, 𝑥2) of 
(𝑎, 𝑏).

A function 𝑓  is decreasing over an interval (𝑎, 𝑏) if 
𝑓(𝑥2) < 𝑓(𝑥1) for any 𝑥1 < 𝑥2 in (𝑎, 𝑏). Equivalently, 
𝑓  is decreasing over (𝑎, 𝑏) if the average rate of 
change is negative over any subinterval (𝑥1, 𝑥2) of 
(𝑎, 𝑏).

−5 −4 −3 −2 −1 1 2 3 4 5 𝑥

−5

−4

−3

−2

−1

1

2

3

4

5

𝑦

0

local max

absolute min

Increasing
over

(−3, −2)

Decreasing
over

(−2, 2)

Increasing
over
(2, ∞)

A function 𝑓  has a local maximum 𝑓(𝑐) if 𝑓(𝑐) ≥ 𝑓(𝑥) for any 𝑥 near 𝑐. It has a local 
minimum 𝑓(𝑐)if 𝑓(𝑐) ≤ 𝑓(𝑥) for any 𝑥 near 𝑐.

A function 𝑓  has an absolute maximum 𝑓(𝑐) if 𝑓(𝑐) ≥ 𝑓(𝑥) for all 𝑥 in the domain of 𝑓 . It 
has an absolute minimum 𝑓(𝑐) if 𝑓(𝑐) ≤ 𝑓(𝑥) for all 𝑥 in the domain of 𝑓 .

♣︎

Remark

The intervals of monotonicity are usually taken as as open intervals. However, some 
textbooks may include the endpoints in the intervals.

The set of points near a point 𝑥 = 𝑐 is often called a small neighborhood of a point 𝑥 =
𝑐. It is usually taken as an interval (𝑐 − 𝛿, 𝑐 + 𝛿) for some small positive number 𝛿.

Theorem 1.3.3 (Local Extremum from Monotonicity)

A function 𝑓  has a local maximum at 𝑥 = 𝑐 if it switches from increasing to decreasing 
near 𝑐.

It has a local minimum at 𝑥 = 𝑐 if it switches from decreasing to increasing near 𝑐.
♡
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Chapter 1 Introduction to Functions 1.3 Monotonicity and Extrema

Example 1.3.5.  Find the interval of increasing and the interval of decreasing, and the 
local maxima and local minima of the function 𝑓  defined by the following graph.

−3 −2 −1 1 2 3 𝑥

−3

−2

−1

1

2

3
𝑦

0

Solution.  The function goes up on the left of 
𝑥 = −1 and on the right of 𝑥 = 1. Therefore, it is 
increasing over the intervals (−∞, −1) ∪ .

It goes down between 𝑥 = −1 and 𝑥 = 1. There
fore, it is decreasing over the interval .

The function switches from  to  

at 𝑥 = −1. Therefore, it has a local maximum at 
𝑥 = −1 with value 𝑓(−1) = 2.

It switches from  to  at 𝑥 = 1. 

Therefore, it has a local minimum at 𝑥 = 1 with 
value 𝑓(1) = −2.

Example 1.3.6.  Find the local maximum, local minium, absolute maximum, and absolute 
minimum of the function 𝑓  defined by the following graph if they exist.

−4 −3 −2 −1 1 2 3 𝑥

−3

−2

−1

1

2

3

4

𝑦

0

Solution.  The function switches from decreasing 
to increasing at 𝑥 = −1. Therefore, it has a local 

 at 𝑥 = −1 with value 𝑓(−1) = .

Because (−1, 𝑓(−1)) is the lowest point on the 
graph, the absolute  is 𝑓(−1) = −2.

The function switches from  to  

at 𝑥 = 1. Therefore, it has a local  at 𝑥 = 1 

with value 𝑓(1) = .

Because (−3, 𝑓(−3)) is the highest point on the 
graph, the absolute  is 𝑓(−3) = .

Remark

Local extrema can also be found by using calculus techniques. In terms of average rate 
of change, a local extremum occurs where the average rate of change approaches zero 
as the interval shrinks to a point. It is a local maximum if the average rate of change 
changes from positive to negative, and it is a local minimum if the average rate of change 
changes from negative to positive.
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Exercises

🖊️ Exercise 1.3.1.  The electrostatic force 𝐹 , measured in newtons, between two charged particles 

can be related to the distance between the particles 𝑑, in centimeters, by the formula 𝐹(𝑑) = 2
𝑑2 . 

Find the average rate of change of force if the distance between the particles is increased from 2 
cm to 6 cm.

Answer: −1
9  N/cm“.

🖊️ Exercise 1.3.2.  Find the average rate of change of 𝑓(𝑥) = 𝑥2 + 2𝑥 − 8 on the interval [5, 𝑎].

Answer: 𝑎 + 7.

🖊️ Exercise 1.3.3.  Find the difference quotient of 𝑓(𝑥) =
√

𝑥 at 𝑥 = 𝑎. Make sure that the numerator 

is rationalized in your answer.

Answer: 1√
𝑎+ℎ+

√
𝑎 .
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Chapter 1 Introduction to Functions Exercises

🖊️ Exercise 1.3.4.  Find the difference quotient of 𝑓(𝑥) = 𝑥2 − 2𝑥 at 𝑥 = 𝑎.

Answer: 2𝑎 − 2 + ℎ.

🖊️ Exercise 1.3.5.  Finding the absolute maximum and minimum of the function 𝑓 defined by the 

following graph.

−4 −3 −2 −1 1 2 3 4 𝑥

−4

−3

−2

−1

1

2

3

4

𝑦

0

Answer: The absolute maximum is 𝑓(1) = 3. The absolute minimum is 𝑓(3) = −2.

🖊️ Exercise 1.3.6.  Find the interval of increasing and the interval of decreasing, and the local 

maxima and local minima of the function 𝑓 using its graph.

−5 −4 −3 −2 −1 1 2 3 4 5 𝑥

−5

−4

−3

−2

−1

1

2

3

4

5

𝑦

0

Answer: Increasing: (−∞, −2) ∪ (2, ∞); decreasing: (−2, 2); local maximum: 𝑓(−2) = 4; local minimum: 𝑓(2) = −4.

16 / 224 PreCalculus Workbook

https://creativecommons.org/licenses/by-nc-sa/4.0/
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 1.4 Algebra of Functions

Definition 1.4.1 (Algebra of Functions)

Let 𝑓  and 𝑔 be two functions with domains 𝐴 and 𝐵 respectively. We define the linear 
combination, product, and quotient functions as follows.

• Linear combination: (𝑎𝑓 + 𝑏𝑔)(𝑥) = 𝑎𝑓(𝑥) + 𝑏𝑔(𝑥) with the domain 𝐴 ∩ 𝐵.

• Product: (𝑓𝑔)(𝑥) = 𝑓(𝑥)𝑔(𝑥) with the domain 𝐴 ∩ 𝐵.

• Quotient: (𝑓
𝑔)(𝑥) = 𝑓(𝑥)

𝑔(𝑥)  with the domain {𝑥 in 𝐴 ∩ 𝐵 | 𝑔(𝑥) ≠ 0}.
♣︎

Example 1.4.1.  Consider the functions 𝑓(𝑥) = 𝑥 − 1 and 𝑔(𝑥) = 𝑥2 − 1.

1) Find the functions (𝑔 − 𝑓)(𝑥) and ( 𝑔
𝑓 )(𝑥) in the simplest form.

2) Find their domains and write in interval notations.

Solution. 

1) The function (𝑔 − 𝑓)(𝑥) is given by

(𝑔 − 𝑓)(𝑥) = 𝑔(𝑥) − 𝑓(𝑥) = ( ) − ( ) = 𝑥2 − 𝑥.
The function ( 𝑔

𝑓 )(𝑥) is given by

(𝑔
𝑓

)(𝑥) = 𝑔(𝑥)
𝑓(𝑥)

= 𝑥2 − 1
𝑥 − 1

= (𝑥 − 1)( )
𝑥 − 1

= , 𝑥 ≠ 1.

2) Because the domains of 𝑓  and 𝑔 are both (−∞, ∞), the domain of 𝑓 − 𝑔 is
(−∞, ∞) ∩ (−∞, ∞) = .

The domain of 𝑔
𝑓  is {𝑥 in (−∞, ∞) | 𝑓(𝑥) ≠ 0}. Solving 𝑓(𝑥) = 𝑥 − 1 = 0 yields 𝑥 =

. In interval notation, the domain of 𝑔
𝑓  is
∪ (1, ∞).

Definition 1.4.2 (Compositions of Functions)

Let 𝑓  and 𝑔 be two functions with domains 𝐴 and 𝐵 respectively. The composite function 
𝑓 ∘ 𝑔 (also called the composition of 𝑓  and 𝑔) is defined as

(𝑓 ∘ 𝑔)(𝑥) = 𝑓(𝑔(𝑥)) with the domain {𝑥 ∈ 𝐵 ∣ 𝑔(𝑥) in 𝐴}.
The notation 𝑓 ∘ 𝑔 is read as “𝑓  composed with 𝑔” and means that 𝑓  take 𝑔 as its input.

♣︎

Remark

Note that in general, 𝑓 ∘ 𝑔 is not the same as 𝑔 ∘ 𝑓 .

For example, let 𝑓(𝑥) = 𝑥 + 1, 𝑔(𝑥) = 1
𝑥 , then (𝑓 ∘ 𝑔)(𝑥) = 1

𝑥
+ 1 ≠ 1

𝑥 + 1
= (𝑔 ∘ 𝑓)(𝑥).
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Example 1.4.2.  Consider the functions 𝑓(𝑥) =
√

𝑥 − 2 and 𝑔(𝑥) = 𝑥2 + 1.

1) Find and simplify the functions (𝑓 ∘ 𝑔)(𝑥) and (𝑔 ∘ 𝑓)(𝑥). Are they the same function?

2) Find the domains of 𝑓 ∘ 𝑔 and 𝑔 ∘ 𝑓 . Are they the same?

Solution. 

1) The function (𝑓 ∘ 𝑔)(𝑥) is given by

(𝑓 ∘ 𝑔)(𝑥) = 𝑓(𝑔(𝑥)) = 𝑓( ) = √(𝑥2 + 1) − 2 = √ .
The function (𝑔 ∘ 𝑓)(𝑥) is given by

(𝑔 ∘ 𝑓)(𝑥) = 𝑔(𝑓(𝑥)) = 𝑔( ) = (
√

𝑥 − 2)
2

+ 1 = + 1 = 𝑥 − 1.

Therefore, they are not the same function.

2) The domain of 𝑓  is [2, ∞) and the domain of 𝑔 is (−∞, ∞).

The domain of 𝑓 ∘ 𝑔 is {𝑥 in (−∞, ∞) | 𝑔(𝑥) in [2, ∞)}. Solving the inequality 𝑔(𝑥) ≥ 2 
yields

𝑥2 + 1 ≥ 2
𝑥2 ≥ 1

𝑥 ≥ or 𝑥 ≤ −1.
Thus, the domain of 𝑓 ∘ 𝑔 in interval notation is

(−∞, −1] ∪ .
The domain of 𝑔 ∘ 𝑓  is {𝑥 in [2, ∞) | 𝑓(𝑥) in (−∞, ∞)}. Since 𝑓(𝑥) is always in (−∞, ∞), 
the domain of 𝑔 ∘ 𝑓  is the same as the domain of 𝑓 , that is

.

Example 1.4.3.  Consider 𝑓(𝑡) = 𝑡2 − 4𝑡 and ℎ(𝑥) =
√

𝑥 + 3. Evaluate

1)
𝑓(1)
𝑔(1) 2) (ℎ · 𝑓)(−1) 3) (𝑓 ∘ ℎ)(−1) 4) (3𝑓 − ℎ)(−1)

Solution.  First find 𝑓(1), 𝑔(1), 𝑓(−1), and ℎ(−1):
𝑓(1) = (1)2 − 4(1) = ,

𝑔(1) =
√

1 + 3 = ,

𝑓(−1) = (−1)2 − 4(−1) = ,

ℎ(−1) =
√

−1 + 3 = .

1)
𝑓(1)
𝑔(1)

= = .

2) (ℎ · 𝑓)(−1) = ℎ(𝑓(−1)) = ℎ( ) = √ = .

3) (𝑓 ∘ ℎ)(−1) = 𝑓(ℎ(−1)) = 𝑓( ) = ( )2 − 4( ) = .

4) (𝑓 − ℎ)(−1) = 3𝑓(−1) − ℎ(−1) = 3( ) − = .
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Chapter 1 Introduction to Functions 1.4 Algebra of Functions

Example 1.4.4.  Using the graphs to evaluate the given functions.

1) (𝑓 + 𝑔)(1)

2) (𝑓𝑔)(1)

3) (𝑓
𝑔)(1)

4) 𝑓2(1) − (3𝑔
𝑓 )(0)

5) (𝑔 ∘ 𝑓)(−3)

6) (𝑓 ∘ 𝑔)(0))
−4 −3 −2 −1 1 2 3 4 5 𝑥

−4

−3

−2

−1

1

2

3

4

5

𝑦

0

𝑦 = 𝑓(𝑥)

𝑦 = 𝑔(𝑥)

Solution.  First find the values of 𝑓(1), 𝑔(1), 𝑓(−3), 𝑓(0), and 𝑔(0) from the graph:
𝑓(1) = , 𝑔(1) = , 𝑓(−3) = , 𝑓(0) = 𝑔(0) = .
Therefore,

1) (𝑓 + 𝑔)(1) = 𝑓(1) + 𝑔(1) = .

2) (𝑓𝑔)(1) = 𝑓(1)𝑔(1) = .

3) (𝑓
𝑔
)(1) = 𝑓(1)

𝑔(1)
= .

4) 𝑓2(1) − (3𝑔
𝑓

)(0) = (𝑓(1))2 − 3𝑔(0)
𝑓(0)

= .

5) (𝑔 ∘ 𝑓)(−3) = 𝑔(𝑓(−3)) = 𝑔( ) = .

6) (𝑓 ∘ 𝑔)(0) = 𝑓(𝑔(0)) = 𝑓( ) = .

Example 1.4.5.  Consider the function ℎ(𝑥) =
√

𝑥2 + 1. Find two non-identity functions 𝑓  
and 𝑔 so that ℎ(𝑥) = 𝑓(𝑔(𝑥)).

Solution.  One possible answer is 𝑓(𝑥) =
√

𝑥 and 𝑔(𝑥) = .
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Exercises

🖊️ Exercise 1.4.1.  Consider the functions 𝑓(𝑥) = 𝑥2 − 1 and 𝑔(𝑥) = 𝑥 + 1.

1) Find the functions 𝑓 − 𝑔 and 𝑓
𝑔 , and their domains.

2) Find (𝑓2 − 3𝑔)(1).

3) Find (2𝑓𝑔 − 3𝑓
𝑔 )(2).

Answer: 1) (𝑓 − 𝑔)(𝑥) = 𝑥2 − 𝑥 − 2, domain: (−∞, ∞); (𝑓
𝑔)(𝑥) = 𝑥 − 1, domain: (−∞, 1) ∪ (1, ∞). 2) −6. 3) 15.

🖊️ Exercise 1.4.2.  Using the graphs to evaluate the given functions.

1) (𝑓 + 𝑔)(1)

2) (𝑓𝑔)(1)

3) (𝑓
𝑔)(1)

4) (𝑔 ∘ 𝑓)(−1)

5) 𝑓(𝑔(0))

6) 𝑔(10 − 𝑓2(0))

7) (𝑓
𝑔)(𝑔(0))

−4 −3 −2 −1 1 2 3 4 𝑥

−4

−3

−2

−1

1

2

3

4

𝑦

0

𝑦 = 𝑓(𝑥)

𝑦 = 𝑔(𝑥)

Answer: 1) 2. 2) 1. 3) 1. 4) 1. 5) 1. 6) −2. 7) 1
2
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🖊️ Exercise 1.4.3.  Consider the functions 𝑓(𝑥) = 1
𝑥−2 and 𝑔(𝑥) =

√
𝑥 + 4.

1) Find 𝑓 ∘ 𝑔 and its domain. 2) Find (𝑔 ∘ 𝑓)(3).

Answer: 1) (𝑓 ∘ 𝑔)(𝑥) = 1√
𝑥+4−2 , domain: (−4, 0) ∪ (0, ∞). 2)

√
5.

🖊️ Exercise 1.4.4.  Consider the function ℎ(𝑥) = 3
√

2𝑥 − 1. Find two non-identity functions 𝑓 and 𝑔 

so that ℎ(𝑥) = 𝑓(𝑔(𝑥)).

Answer: 𝑓(𝑥) = 3
√

𝑥, 𝑔(𝑥) = 2𝑥 − 1.
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 1.5 Transformations

Definition 1.5.1 (Shifting)

Let 𝑓  and 𝑔 be two functions, and 𝐶 and 𝐷 be two real numbers.

If 𝑔(𝑥) = 𝑓(𝑥) + 𝐷, then the graph of 𝑔 is obtained by shifting the graph of 𝑓  by 𝐷 units. 
We call the transformation from 𝑓  to 𝑔 a vertical shift by 𝐷 units.

If 𝑔(𝑥) = 𝑓(𝑥 − 𝐶), then the graph of 𝑔 is obtained by shifting the graph of 𝑓  by 𝐶 units. 
We call the transformation from 𝑓  to 𝑔 a horizontal shift by 𝐶 units.

♣︎

Direction of Shift

The signs of 𝐶 and 𝐷 determine the direction of the shift. A positive sign indicates an 
upward or rightward shift. A negative sign indicates a downward or leftward shift.

Example 1.5.1.  The point (9, −15) is on the graph of 𝑦 = 𝑓(𝑥).

1) Find a point on the graph of 𝑔(𝑥) = 𝑓(𝑥) + 5.

2) Find a point on the graph of 𝑔(𝑥) = 𝑓(𝑥 + 5).

Solution. 

1) Because 𝑓(9) = −15,
𝑔(9) = 𝑓( ) + 5 = .

Therefore, (9, ) is a point on the graph of 𝑔(𝑥) = 𝑓(𝑥) + 5.

2) Because 𝑓(9) = −15 and 𝑔(𝑥) = 𝑓(𝑥 + 5), if we let 𝑥 be the solution of 𝑥 + 5 = 9, that is, 
𝑥 = , then

𝑔(4) = 𝑓( + 5) = 𝑓(9) = −15.
Therefore, (4, −15) is a point on the graph of 𝑔(𝑥) = 𝑓(𝑥 + 5)

Example 1.5.2.  Consider the functions 𝑓(𝑥) = 𝑥2, 𝑔(𝑥) = 𝑥2 − 1 and ℎ(𝑥) = 𝑥2 + 2.

1) Describe how to get the graph of 𝑔 from the graph of 𝑓 .

2) Describe how to get the graph of ℎ from the graph of 𝑔.

3) Describe how to get the graph of 𝑓  from the graph of ℎ.

Solution.  To determine the shift from 𝑓  to 𝑔, write the function 𝑔 as a function of 𝑓  and 
find the units of shift.

1) Because 𝑔(𝑥) = 𝑓(𝑥) + 1, the graph 𝑔 is a upward shift of the graph of 𝑓  by 1 unit.

2) Because ℎ(𝑥) = 𝑔(𝑥) + , the graph ℎ is a upward shift of the graph 𝑔 by 3 units.

3) Because 𝑓(𝑥) = ℎ(𝑥) + (−2), the graph of 𝑓  is a  shift of the graph ℎ by 2 units.
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Example 1.5.3.  Consider the functions 𝑓(𝑥) = 𝑥2, 𝑔(𝑥) = (𝑥 + 1)2 and ℎ(𝑥) = (𝑥 − 2)2.

1) Describe how to get the graph of 𝑔 from the graph of 𝑓 .

2) Describe how to get the graph of ℎ from the graph of 𝑔.

3) Describe how to get the graph of 𝑓  from the graph of ℎ.

Solution.  To determine the transformation from 𝑓  to 𝑔, write the function 𝑔 as a function 
of 𝑓  and find the units of shift.

1) Because 𝑔(𝑥) = 𝑓(𝑥 + 1) = 𝑓(𝑥 − (−1)), the graph 𝑔 is a shift of the graph of 𝑓  to the 
 by 1 unit.

2) Because ℎ(𝑥) = 𝑔(𝑥 − 3), the graph ℎ is a shift of the graph 𝑔 to the  by 3 units.

3) Because 𝑓(𝑥) = ℎ(𝑥 + 2) = ℎ(𝑥 − ( )), the graph of 𝑓  is a shift of the graph ℎ to 
the  by 2 units.

How to Find the Horizontal Shift 𝐶

Suppose that 𝑔(𝑥) = 𝑓(𝑥 + 𝑘). The horizontal shift 𝐶 can be found by solving the equation 
𝐶 + 𝑘 = 0. Thus, 𝐶 = −𝑘.

Example 1.5.4.  Sketch the graph of 𝑓(𝑥) = |𝑥|. Then use the graph to sketch the graph 
of ℎ(𝑥) = 𝑓(𝑥 + 2) − 1.

Solution.  By the definition of absolute value, the function 𝑓(𝑥) = |𝑥| can be written as

𝑓(𝑥) = {𝑥 𝑥 ≥ 0
−𝑥 𝑥 < 0.

Since 𝐷 = −1, and 𝐶 = −2, the graph of ℎ is a shift of the graph of 𝑓  to the left by 2 units 
and downward by 1 unit. The graphs of 𝑓  and ℎ are shown below.

−5 −4 −3 −2 −1 1 2 3 4 5 𝑥
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𝑦 = 𝑓(𝑥) = |𝑥|
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ℎ(𝑥) = 𝑓(𝑥 + 2) − 1 = |𝑥 + 2| − 1
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Example 1.5.5.  The function 𝑦 = 𝑔(𝑥) shown in the picture is a shift of the square root 
function 𝑦 =

√
𝑥. Find 𝑔(𝑥).

−2 −1 1 2 𝑥

−2

−1

1

2
𝑦

0

Solution.  Since the graph of 𝑔 is a shift of the graph of 𝑓(𝑥) =
√

𝑥, the function 𝑔 is defined 
by 𝑔(𝑥) = 𝑓(𝑥 − 𝐶) + 𝐷. Note that the function 𝑓  has a starting point at (0, 0), and the 
function 𝑔 has a starting point at (−1, −1). The defining equation of 𝑔 implies the two 
points are related by the the system of equations:

−1 = 0 − 𝐶
𝐶 = 1,

−1 = 0 + 𝐷
𝐷 = −1.

Thus, the function 𝑔 is given by 𝑔(𝑥) = 𝑓(𝑥 − 1) − 1 = √(𝑥 − 1) + 1 − 1 =
√

𝑥 − 1.

Definition 1.5.2 (Scaling)

Let 𝑓  and 𝑔 be two functions, and 𝐶 and 𝐷 be two real numbers. Assume that 𝐴 > 0 and 
𝐵 > 0.

If 𝑔(𝑥) = 𝐴𝑓(𝑥), then the graph of 𝑔 is obtained by scaling the graph of 𝑓  by a factor of 𝐴 
in the vertical direction. We say that the transformation from 𝑓  to 𝑔 a vertical scaling of 
the function 𝑦 = 𝑓(𝑥) by a factor of 𝐴.

If 𝑔(𝑥) = 𝑓(𝐵𝑥), then the graph of 𝑔 is obtained by scaling the graph of 𝑓  by a factor of 
1
𝐵  in the horizontal direction. We say that the transformation from 𝑓  to 𝑔 a horizontal 
scaling of the function 𝑦 = 𝑓(𝑥) by a factor of 1

𝐵 .
♣︎

Remark

If the factor 𝐴 or 
1
𝐵

 is greater than 1, the scaling is a stretch, and it is between 0 and 1, 

the scaling is a compression.

If 𝐴 < 0 or 𝐵 < 0, then the function 𝑔 is obtained from 𝑓  by a reflection (see Definition 
Definition 1.5.3) and a scaling.

24 / 224 PreCalculus Workbook

https://creativecommons.org/licenses/by-nc-sa/4.0/


Chapter 1 Introduction to Functions 1.5 Transformations

Example 1.5.6.  The point (9, −15) is on the graph of 𝑦 = 𝑓(𝑥).

1) Find a point on the graph of 𝑔(𝑥) = 1
3𝑓(𝑥).

2) Find a point on the graph of 𝑔(𝑥) = 𝑓(3𝑥)

Solution. 

1) Because 𝑓(9) = −15,

𝑔(9) = 1
3
𝑓(9) = 1

3
( ) = .

Therefore, (9, ) is a point on the graph of 𝑔(𝑥) = 1
3𝑓(𝑥).

2) Because 𝑓(9) = −15 and 𝑔(𝑥) = 𝑓(3𝑥), if we let 𝑥 be the solution of 3𝑥 = 9, that is, 𝑥 =
, then

𝑔(3) = 𝑓(3 · ( )) = 𝑓(9) = −15.
Therefore, ( , −15) is a point on the graph of 𝑔(𝑥) = 𝑓(3𝑥).

Example 1.5.7.  Describe how to get the graph of the function 𝑔(𝑥) = 4𝑥2 from the graph 
of the function 𝑓(𝑥).

Solution. 

Option 1: Since 𝑔(𝑥) = 4𝑓(𝑥), the graph of 𝑔 can be obtained from the graph of 𝑓(𝑥) =
𝑥2 by a vertical stretch by a factor of 4.

Option 2: Since 𝑔(𝑥) = 𝑓(2𝑥), the graph of 𝑔 can be obtained from the graph of 𝑓(𝑥) =
𝑥2 by a horizontal compression by a factor of 1

2 .

Definition 1.5.3 (Reflections)

Let 𝑓  and 𝑔 be two functions.

If 𝑔(𝑥) = −𝑓(𝑥), then the graph of 𝑔 is obtained by reflecting the graph of 𝑓  about the 𝑥
-axis. We say that the transformation from 𝑓  to 𝑔 a vertical reflection of the function 
𝑦 = 𝑓(𝑥).

If 𝑔(𝑥) = 𝑓(−𝑥), then the graph of 𝑔 is obtained by reflecting the graph of 𝑓  about the 𝑦-
axis. We say that the transformation from 𝑓  to 𝑔 a horizontal reflection of the function 
𝑦 = 𝑓(𝑥).

♣︎

Example 1.5.8.  Reflect the graph of 𝑓(𝑥) = |𝑥 − 1| about the 𝑥-axis and then about the 𝑦
-axis. Denote the resulting function by 𝑦 = 𝑔(𝑥). Find a defining equation of 𝑔.

Solution.  Reflecting the graph of 𝑓  about the 𝑥-axis gives the function 𝑦 = −𝑓(𝑥) = −|𝑥 −
1|. Reflecting the graph of 𝑦 = −𝑓(𝑥) about the 𝑦-axis gives the function

𝑦 = 𝑔(𝑥) = −𝑓(−𝑥) = = −|𝑥 + 1|.
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Chapter 1 Introduction to Functions 1.5 Transformations

Example 1.5.9.  The graph of the function 𝑓(𝑥) = 2𝑥 is shown below. Use reflections to 
sketch the graph of the function 𝑔(𝑥) = −(1

2)𝑥
.

−4 −3 −2 −1 1 2 3 4 𝑥
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𝑦
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𝑔(𝑥) = −(1
2)𝑥

Solution.  The function 𝑔(𝑥) = −(1
2)𝑥

 can be written as 𝑔(𝑥) = −𝑓(−𝑥), where 𝑓(𝑥) = 2𝑥. 
Thus, the graph of 𝑔 can be obtained from the graph of 𝑓  by reflecting the graph of 𝑓  
about the 𝑦-axis and then about the 𝑥-axis. The graph of 𝑔 is shown below.

Definition 1.5.4 (Even and Odd Functions)

A function 𝑓  is an even function if 𝑓(−𝑥) = 𝑓(𝑥) for all 𝑥 in the domain of 𝑓 .

A function 𝑓  is an odd function if 𝑓(−𝑥) = −𝑓(𝑥) for all 𝑥 in the domain of 𝑓 .
♣︎

Symmetry of Even and Odd Functions

The graph of an even function is symmetric about 𝑦-axis, that is, if (𝑥, 𝑦) is on the graph, 
then (−𝑥, 𝑦) is also on the graph.

The graph of an odd function is symmetric about the origin, that is, if (𝑥, 𝑦) is the on the 
graph, then (−𝑥, −𝑦) is also on the graph.

Example 1.5.10.  Determine whether the functions is even, odd, or neither.

1) 𝑓(𝑥) = 𝑥2 − 1 2) 𝑔(𝑥) = |𝑥 − 1| 3) ℎ(𝑥) = 𝑥3 − 2𝑥 4) 𝑘(𝑥) = 1
𝑥2 .

Solution. 

1) Because 𝑓(−𝑥) = (−𝑥)2 − 1 = 𝑥2 − 1 = 𝑓(𝑥), the function 𝑓  is an even function.

2) Because 𝑔(−𝑥) = |−𝑥 − 1| = |𝑥 + 1| ≠ |𝑥 − 1| = 𝑔(𝑥) and 𝑔(−𝑥) ≠ −𝑔(𝑥), the function 𝑔 
is neither even nor odd.

3) Because ℎ(−𝑥) = (−𝑥)3 − 2(−𝑥) = −𝑥3 + 2𝑥 = −(𝑥3 − 2𝑥) = −ℎ(𝑥), the function ℎ is an 
odd function.

4) Because 𝑘(−𝑥) = 1
(−𝑥)2 = 1

𝑥2 = 𝑘(𝑥), the function 𝑘 is an even function.
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Order of Transformations

To get the graph of the function 𝑔(𝑥) = 𝐴𝑓(𝐵𝑥 + 𝐶) + 𝐷 from the graph of the function 
𝑦 = 𝑓(𝑥), the order of horizontal or vertical transformations depends on how to get a point 
(𝑥, 𝑦) on the graph 𝑔 from a point (𝑎, 𝑏) on the graph of 𝑓 . If (𝑎, 𝑏) is a point on the graph 
of 𝑓 , then the solution (𝑥, 𝑦) of the system of linear equations

{𝑎 = 𝐵𝑥 + 𝐶
𝑦 = 𝐴𝑏 + 𝐷

is the point on the graph of 𝑔 obtained by transformations from the point (𝑎, 𝑏). The order of 
transformations depends on the order of algebraic operations used to solve for 𝑥 and 𝑦.

One possible order of transformations is as follows:

• Vertical transformations (from the left (𝐴) to the right (𝐷)):

1) A vertical stretch/compression with the factor |𝐴|

2) A vertical refection if 𝐴 < 0.

3) A vertical shift of 𝐷 units

• Horizontal transformations (from the right (𝐶) to the left (𝐵)):

1) A horizontal shift of −𝐶 units.

2) A horizontal stretch/compression with the factor 1
|𝐵| .

3) A horizontal refection about 𝑦-axis if 𝐵 < 0.

The two groups of transformations can be switched as 𝑥 and 𝑦 can be solved individually.

Relection and scaling can be switced because of the commutativity of multiplication.

However, the order of shift determines the units of shift.

Example 1.5.11.  Describe how to obtain the graph 𝑔(𝑥) = −2𝑓(3𝑥 − 6) + 4 from the graph 
of the function 𝑓 .

Solution.  To get the graph of the function 𝑔 from the graph of the function 𝑓 , we can 
perform the vertical transformations first, followed by the horizontal transformations.

• For vertical transformations, working 
with from left to right with 𝐴 first and 
then 𝐷:

1) A vertical stretch by a factor of 2.

2) A reflection about the 𝑥-axis.

3) A vertical shift upward by 4 units.

• Horizontal transformations correspond 
to how 𝐵𝑥 + 𝐶 = 0 is solved:

3𝑥 − 6 = 0
3𝑥 − 6 + 6 = 0 + 6 ⟹

3𝑥 = 6
1
3 · (3𝑥) = 1

3 · 2 ⟹

𝑥 = 2
3 .

4) A horizontal shift 
of 6 units to .

5) A horizontal com
pression by a factor 
of .
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Example 1.5.12.  Find an equation of the function 𝑦 = 𝑔(𝑥) whose graph is obtained from 
𝑓(𝑥) =

√
𝑥 by the following transformations in the given order.

1) Stretch vertically by a factor of 2.

2) Shift downward 2 units.

3) Shift 3 units to the left.

4) Stretch horizontally by a factor 1
2 .

Solution.  Let 𝑓(𝑥) =
√

𝑥. The graph of 𝑔 can be obtained from the graph of 𝑓  by the 
following transformations:

1) A vertical stretch by a factor of 2: 𝑔1(𝑥) = 𝑓(𝑥) = 2
√

𝑥.

2) A vertical shift downward by 2 units: 𝑔2(𝑥) = 𝑔1(𝑥) + = 2
√

𝑥 − 2.

3) A horizontal shift to the left by 3 units: 𝑔3(𝑥) = 𝑔2(𝑥 + ) = 2
√

𝑥 + 3 − 2.

4) A horizontal stretch by a factor of 1
2 : 𝑔(𝑥) = 𝑔3( 𝑥) = 2√1

2𝑥 + 3 − 2.

Therefore, the equation of the function 𝑔 is given by

𝑔(𝑥) = 2√1
2
𝑥 + 3 − 2.

Remark

When shifting horizontally, replace 𝑥 with 𝑥 − 𝐶, where |𝐶| is the number of units shifted. 
The sign of 𝐶 matches the direction: right means positive, left means negative.

Example 1.5.13.  Sketch the graph of the function 𝑔(𝑥) = 2
√

3𝑥 − 1 − 4 by a sequence of 
transformation applied on the graph of 𝑓(𝑥) =

√
𝑥.

Solution.  The graph of 𝑔 can be obtained from the graph of 𝑓(𝑥) =
√

𝑥 by the following 
transformations:

1) A horizontal shift to  by 1 unit.

2) A horizontal compression by a factor of .

3) A vertical stretch by a factor of .

4) A vertical shift  by 4 units.
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√

𝑥
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𝑦

0

𝑦 =
√

𝑥 − 1

−1 1 2 3 𝑥
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𝑦 =
√

3𝑥 − 1
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𝑦

0

𝑦 = 2
√

3𝑥 − 1 −2 −1 1 2 3 4 5 𝑥

−5

−4
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−2
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2

𝑦

0

𝑔(𝑥) = 2
√

3𝑥 − 1 − 4
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Exercises

🖊️ Exercise 1.5.1.  Consider the functions 𝑓(𝑥) = 𝑥2 , 𝑔(𝑥) = (𝑥 + 1)2 − 2 and ℎ(𝑥) = (𝑥 − 2)2 + 1.

1) Describe how to get the graph of 𝑔 from the graph of 𝑓 .

2) Describe how to get the graph of ℎ from the graph of 𝑔.

Answer:
1) Shift the graph of 𝑓  to the left by 1 unit and downward by 2 units.

2) Shift the graph of 𝑔 to the right by 3 units and upward by 3 units.

🖊️ Exercise 1.5.2.  Determine whether the function is even, odd, or neither.

1) 𝑓(𝑥) = 1 − 𝑥2 2) 𝑔(𝑥) = 3
√

−𝑥 3) ℎ(𝑥) = 𝑥4 − 𝑥3

Answer: 1) The function 𝑓  is even. 2) The function 𝑔 is odd. 3) The function ℎ is neither even nor odd.
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🖊️ Exercise 1.5.3.  Sketch the graph of the function 𝑔(𝑥) = −2|3𝑥 − 6| + 4 by a sequence of 

transformation applied on the graph of 𝑓(𝑥) = |𝑥|.

Answer:

−2−1 1 2 3 4 5 𝑥

−2
−1

1
2
3
4
5

𝑦

0

🖊️ Exercise 1.5.4.  Find an equation of the function 𝑦 = 𝑔(𝑥) whose graph is obtained from 𝑓(𝑥) =
3
√

𝑥 by the following transformations in the given order.

1) Compress vertically by a factor of 1
2 .

2) Reflect vertically.

3) Shift downward 2 units.

4) Compress horizontal by a factor 2.

5) Shift 3 units to the right.

Answer: 𝑔(𝑥) = −1
2

3√1
2𝑥 − 3 − 2.
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🖊️ Exercise 1.5.5 (Optional).  Describe how to get 𝑓(𝑥) =
√

𝑥 from 𝑔(𝑡) = −1
2
√

2𝑡 + 1 − 3. (Hint: 

find a defining equation 𝑓 using 𝑔.)

Answer:

1)
Shift the graph of 𝑔 up
ward by 3 units.

2)
Reflect the graph of 𝑔 
about the 𝑥-axis.

3)

Stretch the graph of 𝑔 
vertically by a factor of 
2.

4)

Stretch the graph of 𝑔 
horizontally by a factor 
of 1

2 .

5)
Shift the graph of 𝑔 to 
the left by 1 unit.
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 1.6 Inverse Functions

Definition 1.6.1 (Inverse Functions)

Let 𝑦 = 𝑓(𝑥) be a function with the domain 𝐴. A function 𝑓−1(𝑥) with the domain 𝐵 is an 
inverse function of 𝑓  if 𝑓−1(𝑓(𝑥)) = 𝑥 for all in 𝐵 and 𝑓(𝑓−1(𝑥)) for all 𝑥 in 𝐴.

The notation 𝑓−1 is read as “𝑓  inverse.”
♣︎

Properties of Inverse Functions

1) If a function 𝑓  has an inverse function, then it has a unique inverse function.
Proof: Suppose 𝑔 is also an inverse 𝑓 . Then 𝑓(𝑔(𝑥)) = 𝑥 = 𝑓(𝑓−1(𝑥)). Then 𝑔(𝑥) =

𝑓−1(𝑓(𝑔(𝑥))) = 𝑓−1(𝑓(𝑓−1(𝑥))) = 𝑓−1(𝑥).

2) Note that if 𝑓−1 is the inverse of 𝑓 , then 𝑓  is also the inverse of 𝑓−1 that is 𝑓(𝑓−1(𝑥)) =
𝑥 for all 𝑥 in the domain of 𝑓−1.

3) In general, 𝑓−1(𝑥) ≠ 𝑓(𝑥)−1. For example, if 𝑓(𝑥) = 2𝑥, then 𝑓−1(𝑥) = 𝑥
2 , but 𝑓(𝑥)−1 = 1

2𝑥 .

4) The graphs of a one-to-one function 𝑓  and its inverse 𝑓−1 are symmetric about the 
diagonal line 𝑦 = 𝑥.

−4 −3 −2 −1 1 2 3 4 𝑥

−4

−3
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−1

1
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3

4

𝑦

0
𝑦 = 𝑓(𝑥)

𝑦 = 𝑓−1(𝑥)

𝑦 = 𝑥

5) Suppose 𝑓  has the domain 𝐴 and the range 𝐵, then 𝑓−1 has the domain 𝐵 and the 
range 𝐴 (and vice verse).

6) If 𝑓  is a one-to-one (bijective) function, then 𝑓  has an inverse function.

Remark

If 𝑔 is a function such that 𝑓(𝑔(𝑥)) = 𝑥, then 𝑔 is called a right inverse. If 𝑔(𝑓(𝑥)) = 𝑥, then 
𝑔 is called a left inverse. If 𝑓  has a left inverse, then 𝑎 = 𝑏 if 𝑓(𝑎) = 𝑓(𝑏) and 𝑓  is called an 
injective function. If 𝑓  has right inverse, then for any 𝑦 in the range of 𝑓 , there is an 𝑥 =
𝑔(𝑦) in the domain of 𝑓  such that 𝑓(𝑥) = 𝑦 and 𝑓  is called a surjective (or onto) function.
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Example 1.6.1.  Let 𝑓  be a one-to-one function with 𝑓(3) = 4 and 𝑓(4) = 5. Find 𝑓−1(4).

Solution. 

Because 𝑓(3) = 4, we have

𝑓−1(4) = 𝑓−1(𝑓(3)) = .

Example 1.6.2.  Let 𝑓(𝑥) = 1
𝑥−1  and 𝑔(𝑥) = 𝑥+1

𝑥 . Determine if 𝑔 is the inverse function of 𝑓 .

Solution.  Find 𝑓(𝑔(𝑥)) and 𝑔(𝑓(𝑥)).

𝑓(𝑔(𝑥)) = 𝑓(𝑥 + 1
𝑥

) = 1
𝑥+1

𝑥 − 1
= 1 = 𝑥.

𝑔(𝑓(𝑥)) = 𝑔( 1
𝑥 − 1

) =
1

𝑥−1 + 1
1

𝑥−1
= 1

𝑥−1
= 𝑥.

Because 𝑓(𝑔(𝑥)) = 𝑥 and 𝑔(𝑓(𝑥)) = 𝑥, the function 𝑔 is the inverse function of 𝑓 .

Example 1.6.3.  Consider the function 𝑓(𝑥) = 𝑥2 + 1 with 𝑥 > 0. Sketch the graph of 𝑦 =
𝑓−1(𝑥) without finding its equation.

Solution.  The graph of 𝑓−1 is the reflection of the graph of 𝑓  about the line 𝑦 = 𝑥. To sketch 
the graph of 𝑓−1, we can plot some points on the graph of 𝑓  and then reflect them about 
the line 𝑦 = 𝑥.

−1 1 2 3 4 5 𝑥
−1

1

2

3

4

5

𝑦

0

𝑓(𝑥) = 𝑥2 + 1

𝑓−1(𝑥)

𝑦 = 𝑥

Existance of Inverse Functions

Given a function 𝑦 = 𝑓(𝑥), if 𝑓  is one-to-one (bijective), then the inverse function is the 
unique solution 𝑦 of the equation 𝑓(𝑦) = 𝑥.

If 𝑓  is not one-to-one, then the inverse function may not exist over its full domain. 
However, an inverse function can exist by restricting 𝑓  to a subdomain where it is one-
to-one.

For example, the function 𝑓(𝑥) = 𝑥2 is not one-to-one on (−∞, ∞), but if we restrict the 
domain to [0, ∞), the inverse function is 𝑓−1(𝑥) =

√
𝑥.
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Example 1.6.4.  Consider the function 𝑓(𝑥) = 2𝑥 − 3. Find the inverse function 𝑓−1 and its 
domain and range.

Solution.  To find the inverse function 𝑓−1, we solve for 𝑦 from the equation 𝑓(𝑦) = 𝑥:
2𝑦 − 3 = 𝑥

2𝑦 =
𝑦 = .

Therefore, the inverse function is given by

𝑓−1(𝑥) = 𝑥 + 3
2

.

The domain and range of 𝑓  are both (−∞, ∞). Thus, the domain and range of 𝑓−1 are 
also both .

Example 1.6.5.  Consider the function 𝑓(𝑥) = 𝑥
𝑥−1 .

1) Find the inverse function 𝑓−1 and its domain and range.

2) Find the range of 𝑓 .

Solution. 

1) To find the inverse function 𝑓−1, we solve for 𝑦 from the equation 𝑓(𝑦) = 𝑥:
𝑦

𝑦 − 1
= 𝑥

𝑦 = 𝑥(𝑦 − 1)
𝑦 = 𝑥𝑦 − 𝑥

= −𝑥
𝑦(1 − 𝑥) = −𝑥

𝑦 = .

Therefore, the inverse function is given by

𝑓−1(𝑥) = −𝑥
1 − 𝑥

.

Because 𝑓(𝑥) is also a rational expression, the domain of 𝑓  can be found similary and 
it is

(−∞, 1) ∩ .
Thus, the range of 𝑓−1 is .

Since 𝑓−1(𝑥) is a rational expression, it is undefined if 1 − 𝑥 = 0, equivalently, 𝑥 =
. Thus, in interval notation, the domain of 𝑓−1 is

∩ (1, ∞).

2) The range of 𝑓  is the domain of 𝑓−1, that is,
.
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Example 1.6.6.  Consider the function 𝑓(𝑥) =
√

𝑥 − 2. Find the inverse function 𝑓−1 and 
its domain and range.

Solution.  To find the inverse function 𝑓−1, we solve for 𝑦 from the equation 𝑓(𝑦) = 𝑥:

√𝑦 − 2 = 𝑥

𝑦 − 2 = 𝑥2

𝑦 = 𝑥2 + 2.
Therefore, the inverse function is given by

𝑓−1(𝑥) = 𝑥2 + 2.
The domain of 𝑓  is {𝑥 | 𝑥 − 2 ≥ 0}. In interval notation, it is . Thus, the range 
of 𝑓−1 is also [2, ∞).

Because 
√

𝑥 − 2 is nonnegative by the definition of square root. The range of 𝑓  is [0, ∞). 
Thus, the domain of 𝑓−1 is also .

Example 1.6.7.  Consider the function 𝑓(𝑥) = 2(𝑥 + 1)3 − 1. Find an inverse function 𝑓−1.

Solution.  To find the inverse function 𝑓−1, we solve for 𝑦 from the equation 𝑓(𝑦) = 𝑥:

2(𝑦 + 1)3 − 1 = 𝑥

2(𝑦 + 1)3 = 𝑥 + 1

(𝑦 + 1)3 = 𝑥 + 1
2

𝑦 + 1 =

𝑦 = 3√𝑥 + 1
2

− 1.

Therefore, the inverse function is given by

𝑓−1(𝑥) = 3√𝑥 + 1
2

− 1.

The domain and range of 𝑓  are both (−∞, ∞). Thus, the domain and range of 𝑓−1 are 
also both (−∞, ∞).
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Exercises

🖊️ Exercise 1.6.1.  Let 𝑓 be a one-to-one function with 𝑓(−2) = −3 and 𝑓(−3) = 4. Find 𝑓−1(−3).

Answer: 𝑓−1(−3) = −2.

🖊️ Exercise 1.6.2.  Let 𝑓(𝑥) = 𝑥3 − 1 and 𝑔(𝑥) = 3
√

𝑥 + 1. Is 𝑔 = 𝑓−1?

Answer: Yes, 𝑔 = 𝑓−1.
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🖊️ Exercise 1.6.3.  Consider the function 𝑓(𝑥) = 1
𝑥−1 + 1 whose graph is shown below. Sketch the 

graph of 𝑓−1 without finding its equation.

−2 −1 1 2 3 4 𝑥

−2

−1

1

2

3

4

𝑦

0

𝑓(𝑥) = 1
𝑥−1 + 1

Answer:

−2 −1 1 2 3 4 𝑥
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𝑦

0

𝑓(𝑥) = 1
𝑥−1 + 1𝑓−1

🖊️ Exercise 1.6.4.  Consider the function 𝑓(𝑥) = 1−𝑥
𝑥+1 . Find the inverse function 𝑓−1 and its domain 

and range.

Answer: 𝑓−1(𝑥) = 1−𝑥
𝑥+1 ; domain: (−∞, −1) ∩ (−1, ∞); range: (−∞, −1) ∩ (−1, ∞).
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Chapter 1 Introduction to Functions Exercises

🖊️ Exercise 1.6.5.  Consider the function 𝑓(𝑥) = 3√𝑥−1
3 + 2. Find the inverse function 𝑓−1 and its 

domain and range.

Answer: 𝑓−1(𝑥) = 3(𝑥 − 2)3 + 1; domain: (−∞, ∞); range: (−∞, ∞).

🖊️ Exercise 1.6.6.  Consider the function 𝑓(𝑥) =
√

𝑥 + 1 − 1. Find the inverse function 𝑓−1 and its 

domain and range.

Answer: 𝑓−1(𝑥) = (𝑥 + 1)2 − 1; domain: [−1, ∞); range: [−1, ∞).
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Chapter 2 Polynomial and Rational Functions

 2.1 Quadratic Functions and Applications

Definition 2.1.1 (Quadratic Functions)

A function 𝑓(𝑥) = 𝑎𝑥2 + 𝑏𝑥 + 𝑐 with 𝑎 ≠ 0 is called a 
quadratic function. Its graph is called a parabola.

By completing the square, a quadratic function can 
be written in the standard form (or vertex form):

𝑓(𝑥) = 𝑎(𝑥 − ℎ)2 + 𝑘, where ℎ = − 𝑏
2𝑎

 and 𝑘 = 𝑓(ℎ).

The vertical line 𝑥 = − 𝑏
2𝑎  (or 𝑥 = ℎ) is called the axis 

of symmetry.

The vertex is the intersection of the axis of symme
try and the parabola and has the coordinates (ℎ, 𝑘), 
equivalently, (− 𝑏

2𝑎 , 𝑓(− 𝑏
2𝑎)).

𝑥

𝑦

0

Vertex
(ℎ, 𝑘)

x-intercept
(𝑎, 0)

x-intercept
(𝑏, 0)

Axis of symmetry
𝑥 = ℎ

𝑦-intercept
(0, 𝑐)

The 𝑦-intercept of a function 𝑓  is the point (0, 𝑓(0)).

An 𝑥-intercept of a function 𝑓  is the point (𝑥, 0), where 𝑥 is a real solution of the equation 
𝑓(𝑥) = 0. If the equation 𝑓(𝑥) = 0 has no real solution, then there is no 𝑥-intercept.

♣︎

Remark

Some textbooks refer an intercept as the non-zero coordinate rather than the point.

Example 2.1.1.  Find the vertex form of the quadratic function 𝑓(𝑥) = 2𝑥2 + 4𝑥 + 1 and 
determine the axis of symmetry, the vertex, 𝑥-intercepts, and the 𝑦-intercept of the 
function.

Solution.  The axis of symmetry is
𝑥 = −

2( )
= −1.

The vertex is (−1, 𝑓(−1)) = (−1, ).

The 𝑦-intercept is (0, 𝑓(0)) = (0, ).

To find the 𝑥-intercepts, we solve the equation 2𝑥2 + 4𝑥 + 1 = 0. Using the quadratic 
formula, we have

𝑥 =
− ± √ 2 − 4 · · 1

2 · 2
= −4 ±

√
8

4
= −1 ±

√
2 .

Therefore, the 𝑥-intercepts are

(−1 +
√

2
2 , 0) and (−1 −

√
2

2 , 0).
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Chapter 2 Polynomial and Rational Functions 2.1 Quadratic Functions and Applications

Properties of Quadratic Functions

• The domain of a quadratic function is (−∞, ∞).

• If 𝑎 > 0, then the parabola opens upward, the function has an absolute minimum 
𝑓(− 𝑏

2𝑎), and the range of the function is [𝑓(− 𝑏
2𝑎), ∞).

The function is increasing on the interval (−∞, − 𝑏
2𝑎) and decreasing on the interval 

(− 𝑏
2𝑎 , ∞).

• If 𝑎 < 0, then the parabola opens downward, the function has an absolute maximum 
𝑓(− 𝑏

2𝑎), and the range of the function is (−∞, 𝑓(− 𝑏
2𝑎)].

The function is decreasing on the interval (−∞, − 𝑏
2𝑎) and increasing on the interval 

(− 𝑏
2𝑎 , ∞).

Example 2.1.2.  Find the range, the maximum, and the minimum of each function.

1) 𝑓(𝑥) = 3𝑥2 + 6𝑥 − 5. 2) 𝑓(𝑥) = −2𝑥2 + 4 − 1.

Solution.  To find the range, and extremum of each function, we first find the 𝑦-coori
danate of the vertex using the formula 𝑓(− 𝑏

2𝑎).

1) For 𝑓(𝑥) = 3𝑥2 + 6𝑥 − 5:

𝑓(− 𝑏
2𝑎

) = 𝑓(−
2 · 3

) = 𝑓(−1) = .

Therefore, the range is [ , ∞). Because 𝑎 = 3 > 0, the minimum is 𝑓(−1) = −8. 
There is no maximum.

2) For 𝑓(𝑥) = −2𝑥2 + 4 − 1:

𝑓(− 𝑏
2𝑎

) = 𝑓(−
2 · (−2)

) = 𝑓(0) = .

Therefore, the range is (−∞, ]. Because 𝑎 = −2 < 0, the maximum is 𝑓(0) = 3. 
There is no minimum.

Example 2.1.3.  A backyard farmer wants to enclose a rectangular space for a new garden 
within her fenced backyard. She has purchased 80 feet of wire fencing to enclose three 
sides, and she will use a section of the backyard fence as the fourth side. What’s the 
maximal possible area of the garden.

Solution.  Let 𝑥 be the length of the side parallel to the backyard fence, and 𝑦 be the length 
of the other two sides. Then the total length of the fencing used is given by the equation

𝑥 + 2𝑦 = 80,
which can be rewritten as

𝑦 = .
The area 𝐴 of the rectangular garden can be expressed as a function of 𝑥:
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Chapter 2 Polynomial and Rational Functions 2.1 Quadratic Functions and Applications

𝐴(𝑥) = 𝑥 · 𝑦 = 𝑥 · (40 − 𝑥
2
) = .

The function 𝐴(𝑥) is a quadratic function with 𝑎 = −1
2 , 𝑏 = 40, and 𝑐 = 0. Since 𝑎 < 0, the 

graph of 𝐴(𝑥) opens downward and has an absolute maximum at

𝑥 = − 𝑏
2𝑎

= −
2 · (−1

2)
= .

The maximal area is

𝐴(40) = −1
2

· ( )2 + 40 · ( ) = 800ft2.

Example 2.1.4.  A ball is thrown upward from the top of a 40-foot-high building at a speed 
of 80 feet per second. The ball’s height above ground can be modeled by the equation 
𝐻(𝑡) = −16𝑡2 + 80𝑡 + 40.

1) When does the ball reach the maximum height?

2) What is the maximum height of the ball?

3) When does the ball hit the ground? Round your answer to the nearest hundredth of 
a second.

Solution.  The ball reaches the maximum height at time

𝑡 = − 𝑏
2𝑎

= − 80
2 · (−16)

= seconds.

The maximum height of the ball is

𝐻( ) = −16 · ( )2 + 80 · ( ) + 40 = feet.
To find when the ball hits the ground, we solve the equation

−16𝑡2 + 80𝑡 + 40 = 0
2𝑡2 − 10𝑡 − 5 = 0.

Using the quadratic formula, we have

𝑡 =
− ± √ 2 − 4 · 2 · ( )

2 · 2
= −10 ±

√
60

4
.

Since time cannot be negative, we take the positive value:

𝑡 =
−5 + √

2
≈ seconds.
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Chapter 2 Polynomial and Rational Functions 2.2 Exercise

 2.2 Exercise

🖊️ Exercise 2.2.1.  For each of the following functions,

a) 𝑓(𝑥) = 𝑥2 − 4𝑥 + 1. b) 𝑓(𝑥) = −2𝑥2 − 4𝑥 + 1.

1) Write the function in vertex form, 2) Find the axis of symmetry,

3) Find the vertex, 4) Find the 𝑦-intercept,

5) Find the 𝑥-intercepts if they exist, 6) Find the domain and range,

7) Find the global maximum or minimum if it exists.

Answer:

a) Vertex form: 𝑓(𝑥) = (𝑥 − 2)2 − 3; axis of symmetry: 𝑥 = 2; vertex: (2, −3); 𝑦-intercept: (0, 1); 𝑥-intercepts: (2 +√
3, 0) and (2 −

√
3, 0); domain: (−∞, ∞); range: [−3, ∞); global minimum: −3 at 𝑥 = 2.

b) Vertex form: 𝑓(𝑥) = −2(𝑥 + 1)2 + 3; axis of symmetry: 𝑥 = −1; vertex: (−1, 3); 𝑦-intercept: (0, −1); 𝑥-inter
cepts: (−1 +

√
6

2 , 0) and (−1 −
√

6
2 , 0); domain: (−∞, ∞); range: (−∞, 3]; global maximum: 3 at 𝑥 = −1.
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Chapter 2 Polynomial and Rational Functions 2.2 Exercise

🖊️ Exercise 2.2.2.  Find the dimensions of the rectangular parking lots producing the greatest area 

given that 500 feet of fencing will be used to for three sides.

Answer: 250 ft × 125 ft.

🖊️ Exercise 2.2.3.  A soccer stadium holds 62, 000 spectators. With a ticket price of $11, the average 

attendance has been 26, 000. When the price dropped to $9, the average attendance rose to 31, 000. 
Assuming that attendance is linearly related to ticket price, what ticket price would maximize revenue?

Answer: $10.
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Chapter 2 Polynomial and Rational Functions 2.2 Exercise

🖊️ Exercise 2.2.4.  A toy rocket is launched in the air. Its height, in meters above sea level, as a 

function of time, in seconds, is given by ℎ(𝑡) = −4.9𝑡2 + 2𝑡 + 5.

1) Find the maximum height the rocket attains. Round your answer to the nearest hundredth meter.

2) When does the rocket reaches to 4 meters? Round your answer to the nearest hundredth second.

3) When does the rocket hit the ground? Round your answer to the nearest hundredth second.

Answer: 1) Approximately 5.20 meters. 2)
Approximately 0.58 seconds and 1.75 
seconds.

3) Approximately 2.28 seconds.
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Chapter 2 Polynomial and Rational Functions 2.3 Polynomial Functions

 2.3 Polynomial Functions

Definition 2.3.1 (Power Functions)

A power function is a function that simplifies to the form 𝑓(𝑥) = 𝑎𝑥𝑟, where 𝑎 is a 
non-zero constant (the coefficient), 𝑟 is a real number (the exponent), and 𝑥 is the 
independent variable

The domain of 𝑓(𝑥) = 𝑎𝑥𝑟 is usually all real numbers, but for some values of 𝑟 it may be 
restricted to 𝑥 > 0.

♣︎

Example 2.3.1.  Determine if the function is a power function.

1) 𝑓(𝑥) = −2𝑥3 2) 𝑓(𝑥) = 1
𝑥2 3) 𝑓(𝑥) = 3

√
𝑥 4) 𝑓(𝑥) = 2𝑥

Solution. 

1) Yes, it is a power function with 𝑎 = −2 and 𝑟 = 3.

2) Yes, it is a power function with 𝑎 = 1 and 𝑟 = .

3) Yes, it is a power function with 𝑎 = 1 and 𝑟 = .

4) , it is an exponential function.

Definition 2.3.2 (End Behavior of Functions)

The end behavior of a function 𝑓  describes what happens to 𝑓(𝑥) as 𝑥 approaches 
positive or negative infinity.

If 𝑓(𝑥) approaches a fixed value 𝑏 as 𝑥 goes to ∞ or −∞, then the horizontal line 𝑦 = 𝑏 is 
called a horizontal asymptote.

♣︎

Notation for End Behavior

We use an arrow → to mean “goes to” or “approaches.”

For example, if 𝑓(𝑥) = 𝑥, then the end behavior can be described as follows:

As 𝑥 → ∞, 𝑓(𝑥) → ∞. As 𝑥 → −∞, 𝑓(𝑥) → −∞.

How to Determine End Behavior

To determine the end behavior of 𝑓 , choose some very large numbers 𝑁 > 0 and evaluate 
𝑓(𝑁) and 𝑓(−𝑁). The trend shows whether 𝑓(𝑥) approaches ∞, −∞, or a finite value.

For example, if 𝑓(1000), 𝑓(10000) are all very large numbers, then as 𝑥 → ∞, 𝑓(𝑥) → ∞.

If the function is a power function, it is often convenient to plug in ∞ or −∞ directly into 
the function to determine the end behavior.
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Chapter 2 Polynomial and Rational Functions 2.3 Polynomial Functions

Operations with Infinity

When working with ∞ and −∞, use these rules:

∞ + ∞ = ∞ ∞ + 𝑐 = ∞ −∞ − ∞ = −∞ −∞ + 𝑐 = −∞

∞ ⋅ 𝑐 = ∞ if 𝑐 > 0 ∞ ⋅ 𝑐 = −∞ if 𝑐 < 0 −∞ ⋅ 𝑐 = −∞ if 𝑐 > 0 −∞ ⋅ 𝑐 = ∞ if 𝑐 < 0

∞ ⋅ ∞ = ∞ −∞ ⋅ −∞ = ∞ ∞𝑎 = ∞ (𝑎 > 0) ∞𝑎 = 0 (𝑎 < 0)

Note:
• The equal signs indicate trending behavior, not strict equality.
• ∞ + (−∞) is indeterminate.
• ∞

∞  is indeterminate.
• (−∞)𝑎 only makes sense when 𝑎 is a rational number with an odd denominator. In 

this case, (−∞)𝑎 = −∞ if the numerator is odd, and (−∞)𝑎 = ∞ if the numerator 
is even.

Example 2.3.2.  Determine the end behavior(s) of the function.

1) 𝑓(𝑥) = −2𝑥3 2) 𝑓(𝑥) = 1
𝑥2 3) 𝑓(𝑥) = 3

√
𝑥

Solution. 

1) As 𝑥 → ∞, 𝑓(𝑥) → −2 ⋅ ∞3 = .

As 𝑥 → −∞, 𝑓(𝑥) → −2 ⋅ (−∞)3 = .

2) As 𝑥 → ∞, 𝑓(𝑥) → ∞ = 0.

As 𝑥 → −∞, 𝑓(𝑥) → (−∞) = 0.

3) As 𝑥 → ∞, 𝑓(𝑥) → ∞1
3 = .

As 𝑥 → −∞, 𝑓(𝑥) → (−∞)1
3 = .

Definition 2.3.3 (Polynomial Functions)

Let 𝑛 be an integer with 𝑛 ≥ 0. A polynomial function of degree 𝑛 is a function that 
simplifies to the form:

𝑓(𝑥) = 𝑎𝑛𝑥𝑛 + ⋯ + 𝑎2𝑥2 + 𝑎1𝑥 + 𝑎0,
where 𝑎𝑖 are real numbers for 𝑖 = 0, 1, …, 𝑛 and 𝑎𝑛 ≠ 0.

• Each 𝑎𝑖 is a coefficient.
• Each product 𝑎𝑖𝑥𝑖 is a term of the polynomial.
• The term 𝑎𝑛𝑥𝑛 is the leading term, and 𝑎𝑛 is the leading coefficient.
• The number 𝑎0 is the constant term.

♣︎
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Chapter 2 Polynomial and Rational Functions 2.3 Polynomial Functions

Properties of Polynomial Functions

• The domain of a polynomial function is (−∞, ∞).

• The range of an odd degree polynomial function is also (−∞, ∞).

• The range of an even degree polynomial function is either [𝑦min, ∞) if 𝑎𝑛 > 0 or (−∞, 𝑦max] 
if 𝑎𝑛 < 0, where 𝑦min and 𝑦max) are the absolute extrema.

• The end behavior of a polynomial function 𝑓(𝑥) = 𝑎𝑛𝑥𝑛 + ⋯ + 𝑎0 of degree 𝑛 is com
pletely determined by the end behavior of the power function 𝑔(𝑥) = 𝑎𝑛𝑥𝑛.

𝑛 odd, 𝑎𝑛 > 0

𝑥

𝑦
𝑓(𝑥) → ∞

as 𝑥 ⟶ −∞

𝑓(𝑥) → −∞
as 𝑥 ⟶ ∞

𝑛 odd, 𝑎𝑛 < 0

𝑥

𝑦

𝑓(𝑥) → ∞
as 𝑥 ⟶ −∞

𝑓(𝑥) → −∞
as 𝑥 ⟶ ∞

𝑛 even, 𝑎𝑛 > 0

𝑥

𝑦
𝑓(𝑥) → ∞

as 𝑥 ⟶ −∞
𝑓(𝑥) → −∞
as 𝑥 ⟶ ∞

𝑛 even, 𝑎𝑛 < 0

𝑥

𝑦

𝑓(𝑥) → ∞
as 𝑥 ⟶ −∞

𝑓(𝑥) → −∞
as 𝑥 ⟶ ∞

Example 2.3.3.  Determine the end behavior of the function using the arrow notation.

1) 𝑓(𝑥) = 2𝑥4 − 3𝑥 + 1 2) 𝑔(𝑥) = 𝑥 − 3𝑥3 + 2𝑥2

Solution. 

1) As 𝑥 → ∞, 𝑓(𝑥) → 2 ⋅ ∞4 = .
As 𝑥 → −∞, 𝑓(𝑥) → 2 ⋅ (−∞)4 = .

2) As 𝑥 → ∞, 𝑔(𝑥) → −3 ⋅ ∞3 = .
As 𝑥 → −∞, 𝑔(𝑥) → −3 ⋅ (−∞)3 = .

Example 2.3.4.  Identify the degree, the leading therm and the end behavior of the 
polynomial function using the arrow notation.

1) 𝑓(𝑥) = −3𝑥2(𝑥 − 1)(𝑥 + 4) 2) 𝑓(𝑥) = 2𝑥3(1 − 𝑥)(𝑥 + 1)

Solution.  To determine the degree and behavior, first simplify the expression.

1) 𝑓(𝑥) = −3𝑥2(𝑥 − 1)(𝑥 + 4) = −3𝑥2(𝑥2 + ) − 3𝑥4 + 9𝑥3 + 12𝑥2.

The degree is 4, the leading term is −3𝑥4.

As 𝑥 → ∞, 𝑓(𝑥) → −3 ⋅ ∞4 = . As 𝑥 → −∞, 𝑓(𝑥) → −3 ⋅ (−∞)4 = .

2) 𝑓(𝑥) = 2𝑥3(1 − 𝑥)(𝑥 + 1) = 2𝑥3( + 1) = −2𝑥5 + 2𝑥3 + 2𝑥2.

The degree is 5, the leading term is −2𝑥5.

As 𝑥 → ∞, 𝑓(𝑥) → −2 ⋅ ∞5 = . As 𝑥 → −∞, 𝑓(𝑥) → −2 ⋅ (−∞)5 = .
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Exercises

🖊️ Exercise 2.3.1.  Find the degree and leading coefficient, and determined the end behavior for 

the given polynomial.

1) 𝑓(𝑥) = −2𝑥4 2) 𝑓(𝑥) = 2𝑥5 − 𝑥3 3) 𝑓(𝑥) = −2𝑥(1 − 𝑥2) 4) 𝑓(𝑥) = (𝑥2 − 1)(2𝑥4 − 1)

Answer:

1) Degree: 4; leading coefficient: −2; end behavior: as 𝑥 → ±∞, 𝑓(𝑥) → −∞.

2) Degree: 5; leading coefficient: 2; end behavior: as 𝑥 → ±∞, 𝑓(𝑥) → ±∞ respectively.

3) Degree: 3; leading coefficient: 2; end behavior: as 𝑥 → ±∞, 𝑓(𝑥) → ±∞ respectively.

4) Degree: 6; leading coefficient: 2; end behavior: as 𝑥 → ±∞, 𝑓(𝑥) → ∞.
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 2.4 Dividing of Polynomials

Theorem 2.4.1 (Euclidean Division Algorithm)

Let 𝑝(𝑥) and 𝑑(𝑥) be two polynomial. Suppose that 𝑑(𝑥) is non-zero and the degree of 
𝑑(𝑥) is less than or equal to the degree of 𝑓(𝑥). Then there exist unique polynomials 𝑞(𝑥) 
and 𝑟(𝑥) such that

𝑝(𝑥) = 𝑑(𝑥)𝑞(𝑥) + 𝑟(𝑥)
and the degree of 𝑟(𝑥) is less than the degree of 𝑑(𝑥).

♡

Definition 2.4.2 (Long Division)

In the above theorem:
• 𝑝(𝑥) is the dividend,
• 𝑑(𝑥) is the divisor,
• 𝑞(𝑥) is the quotient,
• 𝑟(𝑥) is the remainder.

If 𝑟(𝑥) = 0, then 𝑑(𝑥) divides 𝑝(𝑥). If 𝑟(𝑥) ≠ 0, then the degree of 𝑟(𝑥) is less than the 
degree of 𝑑(𝑥), and

𝑝(𝑥)
𝑑(𝑥)

= 𝑞(𝑥) + 𝑟(𝑥)
𝑑(𝑥)

.

A division algorithm computes the quotient and remainder.

The long division algorithm repeatedly applies Euclidean division to monomial quo
tients until the remainder has degree less than the divisor.

♣︎

Example 2.4.1.  Divide 6𝑥3 + 11𝑥2 − 31𝑥 + 15 by 3𝑥 − 2.

Solution.  We set up the long division as follows:

2𝑥2 + − 7

3𝑥 − 2 6𝑥3 + 11𝑥2 − 31𝑥 + 15

− (6𝑥3 − 4𝑥2)
− 31𝑥

− (15𝑥2 − )
−21𝑥 +

− ( + 14)
1

Explanation: In each step, we di­

vide the leading term (boxed) of the 
current dividend (in odd-numbered 
rows) by the leading term (circled) of 
the divisor to get a term of the quo­

tient (top row). Then we multiply the 
entire divisor by that quotient term 
and place it in the row below and 
subtract it from the current dividend 
to get the new dividend. The last row 
is the remainder.

Thus, 6𝑥3 + 11𝑥2 − 31𝑥 + 15
3𝑥 − 2

= 2𝑥2 + 5𝑥 − 7 + 1
3𝑥 − 2

.
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Example 2.4.2.  Divide 4𝑥4 − 𝑥 + 5 by 𝑥2 − 𝑥 + 3.

Solution.  We set up the long division as follows:

4𝑥2

𝑥2 − 𝑥 + 3 4𝑥4 + 0𝑥3 + 0𝑥2 − 𝑥 + 5

− (4𝑥3 − 4𝑥3 + 12𝑥2)
4𝑥3 − 12𝑥2 − 𝑥

− (4𝑥3 )
+ 5

− (−8𝑥2 + 8𝑥 + )
+ 29

Thus, 4𝑥4 − 𝑥 + 5
𝑥2 − 𝑥 + 3

= 4𝑥2 + 4𝑥 − 8 +
𝑥2 − 𝑥 + 3

.

Definition 2.4.3 (Synthetic Division)

Synthetic division is a shortcut that can be used when the divisor is linear binomial in the 
form 𝑥 − 𝑐. In synthetic division, only the coefficients are used in the division process.

♣︎

Example 2.4.3.  Use synthetic division to divide 4𝑥3 + 10𝑥2 − 6𝑥 − 20 by 𝑥 + 2.

Solution.  We set up the synthetic division as follows:

−2 4 10 −6 −20

−8 20

4 2 0

Explanation: We bring down the leading coeffi­

cient 4 to the third row. Then we multiply it by 
the zero of the divisor, that is −2, and add it to 
the next coefficient 10 to get 2. We repeat this 
process until we reach the last coefficient. The 
last value (in boxed) is the remainder.

Thus, 4𝑥3 + 10𝑥2 − 6𝑥 − 20
𝑥 + 2

= 4𝑥2 + 2𝑥 − 10.

Example 2.4.4.  Use synthetic division to divide −9𝑥4 + 10𝑥3 + 7𝑥2 − 6 by 𝑥 − 1.

Solution.  We set up the synthetic division as follows:

1 −9 10 7 0 −6

−9 8

−9 1 2

Thus, −9𝑥4 + 10𝑥3 + 7𝑥2 − 6
𝑥 − 1

= −9𝑥3 + 𝑥2 + 8𝑥 + 8 + 2
𝑥 − 1

.
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Theorem 2.4.4 (Reminder Theorem)

If a polynomial 𝑓(𝑥) is divided by 𝑥 − 𝑐, then the remainder is the value 𝑓(𝑐).
♡

Proof.  By the Euclidean Division Algorithm, we have
𝑓(𝑥) = (𝑥 − 𝑐)𝑞(𝑥) + 𝑟,

where 𝑟 is the remainder. Since the degree of 𝑟 is less than the degree of 𝑥 − 𝑐, 𝑟 must be 
a constant. Thus, we can write

𝑓(𝑥) = (𝑥 − 𝑐)𝑞(𝑥) + 𝑓(𝑐).
Evaluating both sides at 𝑥 = 𝑐, we have

𝑓(𝑐) = (𝑐 − 𝑐)𝑞(𝑐) + 𝑟 = 𝑟.
⁠ □

Example 2.4.5.  Use the Remainder Theorem to evaluate 𝑓(𝑥) = 6𝑥4 − 𝑥3 − 15𝑥2 + 2𝑥 − 7 
at 𝑥 = 2.

Solution.  By the Remainder Theorem, the remainder when 𝑓(𝑥) is divided by 𝑥 − 2 is 𝑓(2). 
Using synthetic division, we have:

2 6 −1 −15 2 −7

12 14

6 11

Thus, 𝑓(2) = 25.
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Exercises

🖊️ Exercise 2.4.1.  Divide 3𝑥2 − 7𝑥 − 3 by 3𝑥 − 1.

Answer: 3𝑥2−7𝑥−3
3𝑥−1 = 𝑥 − 2 − 5

3𝑥−1 .

🖊️ Exercise 2.4.2.  Divide 16𝑥3 − 12𝑥2 + 20𝑥 − 3 by 4𝑥 + 5.

Answer: 16𝑥3−12𝑥2+20𝑥−3
4𝑥+5 = 4𝑥2 − 8𝑥 + 15 − 78

4𝑥+5 .
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🖊️ Exercise 2.4.3.  Use synthetic division to divide 5𝑥3 − 3𝑥 − 36 by 𝑥 − 3.

Answer: 5𝑥2−3𝑥−36
𝑥−3 = 5𝑥2 + 15𝑥 + 42 + 90

𝑥−3 .

🖊️ Exercise 2.4.4.  Divide 2𝑥4 + 4𝑥3 − 3𝑥2 − 5𝑥 − 2 by 𝑥 + 2.

Answer: 2𝑥4+4𝑥3−3𝑥2−5𝑥−2
𝑥+2 = 2𝑥3 + 0𝑥2 − 3𝑥 + 1.

🖊️ Exercise 2.4.5.  Use the Remainder Theorem to evaluate 𝑓(𝑥) = 2𝑥3 − 5𝑥2 + 4𝑥 − 1 at 𝑥 = −1.

Answer: 𝑓(−1) = 12.
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 2.5 Zeros of Polynomials

Definition 2.5.1 (Zeros of a Polynomial)

If 𝑓  is a polynomial function, then a number 𝑐 is called a zero of 𝑓  if 𝑓(𝑐) = 0.
♣︎

Theorem 2.5.2

Let 𝑓  be a polynomial and 𝑐 a real number. The following are equivalent:

1) 𝑐 is a zero of 𝑓 .

2) 𝑥 − 𝑐 is a factor of 𝑓(𝑥).

3) 𝑥 = 𝑐 is a solution of 𝑓(𝑥) = 0.

4) (𝑐, 0) is an 𝑥-intercept of 𝑦 = 𝑓(𝑥).
♡

Proof.  The equivalence of (4) and (1) follows directly from the definition of 𝑥-intercept.

We show each remaining statement implies the next:

1) implies 2): Suppose 𝑐 is a zero of 𝑓 . Then 𝑓(𝑐) = 0. By the Euclidean Division Algorithm, 
there exist polynomials 𝑞(𝑥) and 𝑟(𝑥) such that 𝑓(𝑥) = (𝑥 − 𝑐)𝑞(𝑥) + 𝑟, where the degree 
of 𝑟 is less than the degree of 𝑥 − 𝑐. Since 𝑓(𝑐) = 0, by the Remainder Theorem, 𝑟 = 0. 
Therefore, 𝑓(𝑥) = (𝑥 − 𝑐)𝑞(𝑥), so 𝑥 − 𝑐 is a factor of 𝑓(𝑥).

2) implies 3): Suppose 𝑥 − 𝑐 is a factor of 𝑓(𝑥). Then there exists a polynomial 𝑞(𝑥) such 
that 𝑓(𝑥) = (𝑥 − 𝑐)𝑞(𝑥). By the zero-product property, if 𝑓(𝑥) = 0, then 𝑥 − 𝑐 = 0, so 𝑥 =
𝑐 is a solution.

3) implies 1): Suppose 𝑥 = 𝑐 is a solution of 𝑓(𝑥) = 0. Then 𝑓(𝑐) = 0, so 𝑐 is a zero of 𝑓 .
⁠ □

Example 2.5.1.  Find 𝑥-intercepts and the 𝑦-intercept of the polynomial function

𝑓(𝑥) = 𝑥3 + 3𝑥2 − 𝑥 − 3.

Solution.  To find the 𝑥-intercepts, we set 𝑓(𝑥) = 0 and factor by grouping method:

𝑓(𝑥) = 𝑥3 + 3𝑥2 − 𝑥 − 3 = (𝑥3 + 3𝑥2) + (−𝑥 − 3)

= 𝑥2(𝑥 + 3) + ( )(𝑥 + 3)

= (𝑥 + 3)(𝑥2 − 1)
= (𝑥 + 3)(𝑥 + 1)( ).

Solving 𝑓(𝑥) = 0 by setting each factor equal to zero, we have: 𝑥 = −3, 𝑥 = −1, and 𝑥 = 1. 
Thus, the 𝑥-intercepts are (1, 0), (−1, 0), and .

The 𝑦-intercept is found by evaluating 𝑓(0):
𝑓(0) = 03 + 3 · 02 − 0 − 3 = −3.

Thus, the 𝑦-intercept is .
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Definition 2.5.3 (Turning Point)

A turning point (also known as a local extremum) is a point at which the function values 
change from increasing to decreasing or decreasing to increasing.

♣︎

Theorem 2.5.4 (Fundamental Theorem of Algebra1)

A degree 𝑛 polynomial function has at least one complex zero.
♡

Corollary 2.5.4.1 (Maximal Number of Turning Points2)

A degree 𝑛 polynomial function may have at most 𝑛 zeros and 𝑛 − 1 turning points.
♡

Example 2.5.2.  Consider the polynomial function 𝑓(𝑥) = (𝑥 − 2)(𝑥 + 1)(𝑥 − 4). Determine 
the zeros, the number of turning points, the 𝑥-intercepts, and the 𝑦-intercept.

Solution.  The zeros of 𝑓  are 2, −1, and .

Since the degree of 𝑓  is 3, it may have at most  turning points.

The 𝑥-intercepts are (2, 0), (−1, 0), and .

The 𝑦-intercept is found by evaluating 𝑓(0):
𝑓(0) = (0 − 2)(0 + 1)(0 − 4) = 8.

Thus, the 𝑦-intercept is (0, 8).

Example 2.5.3.  What can we conclude about the leading term of the polynomial function 
𝑦 = 𝑓(𝑥) represented by the graph below.

−4 −3 −2 −1 1 2 3 4 𝑥

−4

−3

−2

−1

1

2

3

4

𝑦

0

Solution.  Since as 𝑥 → ±∞, 𝑓(𝑥) → ∞, the 
leading coefficient is  and the de

gree must be .

Since the graph has three turning points, 
the degree of the polynomial is at least 

.

Thus, the leading term is of the form 𝑎𝑥𝑛, 
where 𝑎 > 0 and 𝑛 ≥ 4.

1A relatively elementary proof can be found at https://tinyurl.com/tFToA
2The corollary can be proved by induction together with facts of the derivative function.
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Theorem 2.5.5 (Rational Zero Theorem)

Let 𝑓(𝑥) = 𝑎𝑛𝑥𝑛 + 𝑎𝑛−1𝑥𝑛−1 + ⋯ + 𝑎1𝑥 + 𝑎0 be polynomial with integer coefficients. Then 
every rational zero of 𝑓(𝑥) is in the form 𝑝

𝑞 , where 𝑝 is a factor of the constant term 𝑎0 
and 𝑞 is a factor of the leading coefficient 𝑎𝑛.

♡

Example 2.5.4.  List all possible rational zeros of 𝑓(𝑥) = 2𝑥4 − 5𝑥3 + 𝑥2 − 4.

Solution.  The leading coefficient 𝑎4 = 2 has factors ±1 and ±2.

The constant has factors ±1, ±2, and .

Thus, the possible rational zeros are

±1
1

= ±1, ±2
1

= ±4
2

= ± , ±4
1

= ±4, ±1
2
.

Example 2.5.5.  Find the zeros of 𝑓(𝑥) = 4𝑥3 − 3𝑥 − 1.

Solution.  Factoring the leading coefficient and the constant term, and then applying the 
Rational Zero Theorem, we have the possible rational zeros:

±1, ±1
2
, ± .

Using synthetic division to test those possible zeros:

1 4 0 −3 −1

4

4 0

We find that 1 is a zero of 𝑓 . From the synthetic division, we have

𝑓(𝑥) = (𝑥 − 1)(4𝑥2 + 4𝑥 + 1).
The rest of the zeros are found by solving 4𝑥2 + 4𝑥 + 1 = 0. This quadratic equation can 
be solved using the rational zero theorem, factorization, completing the square, or the 
quadratic formula. Here, we use the factorization method:

4𝑥2 + 4𝑥 + 1 = 0
(2𝑥 + 1)(2𝑥 + 1) = 0

2𝑥 + 1 = 0
𝑥 = .

Thus, the zeros of 𝑓  are 1 and −1
2 .
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Theorem 2.5.6 (Linear Factorization)

Let 𝑓(𝑥) be a polynomial with the degree 𝑛 > 1 and the leading coefficient 𝑎𝑛. Then
𝑓(𝑥) = 𝑎𝑛(𝑥 − 𝑐1)(𝑥 − 𝑐2)⋯(𝑥 − 𝑐𝑛),

where 𝑐𝑖 are complex numbers.
♡

Proof.  By the Fundamental Theorem of Algebra, 𝑓(𝑥) has at least one complex zero 𝑐1. By 
the Factor Theorem, 𝑥 − 𝑐1 is a factor of 𝑓(𝑥). Thus, there exists a polynomial 𝑞(𝑥) such that

𝑓(𝑥) = (𝑥 − 𝑐1)𝑞(𝑥).
The degree of 𝑞(𝑥) is 𝑛 − 1. Repeating this process for 𝑞(𝑥), we can factor 𝑓(𝑥) completely 
into linear factors. ⁠ □

Proposition 2.5.7 (Complex Conjugate Roots)

Let 𝑓(𝑥) be a polynomial with real coefficients. If 𝑎 + 𝑏 𝑖 is a zero of 𝑓 , then 𝑎 − 𝑏 𝑖 is also 
a zero of 𝑓 .

♠︎

Proof.  For a complex number 𝑧 = 𝑎 + 𝑏 𝑖, its conjugate is 𝑧 = 𝑎 − 𝑏 𝑖. If 𝑤 = 𝑐 + 𝑑 𝑖 is another 
complex number, then

𝑧 + 𝑤 = 𝑧 + 𝑤, 𝑧 ⋅ 𝑤 = 𝑧 ⋅ 𝑤.
Because the coefficients of 𝑓  are real numbers, we have

𝑓(𝑧) = 𝑎𝑛 ⋅ 𝑧𝑛 + 𝑎𝑛−1 ⋅ 𝑧𝑛−1 + ⋯ + 𝑎1 ⋅ 𝑧 + 𝑎0

= 𝑎𝑛 ⋅ 𝑧𝑛 + 𝑎𝑛−1 ⋅ 𝑧𝑛−1 + ⋯ + 𝑎1 ⋅ 𝑧 + 𝑎0

= 𝑓(𝑧).
Therefore, if 𝑓(𝑎 + 𝑏 𝑖) = 0, then 𝑓(𝑎 − 𝑏 𝑖) = 𝑓(𝑎 + 𝑏 𝑖) = 0 which means that 𝑎 − 𝑏 𝑖 is also a 
zero of 𝑓 . ⁠ □

Proposition 2.5.8 (Irrational Conjugate Roots3)

Let 𝑓(𝑥) be a polynomial with rational coefficients. If 𝑎 + 𝑏
√

𝑚 is a zero, where 𝑎 and 𝑏 are 
rational numbers and 

√
𝑚 is irrational, then 𝑎 − 𝑏

√
𝑚 is also a zero.

♠︎

Proof.  The proof is similar to that of the Complex Conjugate Roots. We leave it as an 
exercise. ⁠ □

Corollary 2.5.8.1 (Factorizations of Polynomials with Real Coefficients)

Let 𝑓(𝑥) be a polynomial with real coefficients. Then 𝑓(𝑥) can be factored into linear and 
irreducible quadratic factors with real coefficients.

♡

Proof.  This is a direct consequence of the Linear Factorization theorem and the Complex 
Conjugate Roots proposition. ⁠ □

3Conjugates are fundamental in Galois theory. For more details, see the Wikipedia article Conjugate 
element (field theory).
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Example 2.5.6.  Find a fourth degree polynomial with real coefficients that has zeros of 
−3, 2, 𝑖, such that 𝑓(−2) = 100.

Solution.  Since the polynomial has real coefficients and 𝑖 is a zero, by the Complex 
Conjugate Roots proposition, −𝑖 is also a zero. Because the degree of the polynomial is 
four, we have

𝑓(𝑥) = 𝑎(𝑥 − )(𝑥 − )(𝑥 − )(𝑥 − )

= 𝑎(𝑥 + 3)(𝑥 − 2)(𝑥2 + 1).
To determine the value of 𝑎, we use the condition 𝑓(−2) = 100:

𝑓(−2) = 𝑎( + 3)(−2 − 2)((−2)2 + 1)
= 𝑎(1)(−4)( )
= −20𝑎.

From 𝑓(−2) = 100, we have
−20𝑎 = 100

𝑎 = .
Thus, an equation for 𝑓  is

𝑓(𝑥) = −5(𝑥 + 3)(𝑥 − 2)(𝑥2 + 1).

Example 2.5.7.  Let 𝑓(𝑥) = 𝑥4 + 2𝑥2 − 8.

1) Factor 𝑓  into linear and irreducible quadratic factors with real coefficients.

2) Factor 𝑓  completely into linear factors with complex coefficients.

Solution.  Note that 𝑥4 = (𝑥2)2, so we can treat 𝑓  as a quadratic in 𝑥2.

First, factor 𝑓  using undetermined coefficients:

𝑓(𝑥) = 𝑥4 + 2𝑥2 − 8

= (𝑥2 − )(𝑥2 + 4).
Solving 𝑥2 − 2 = 0 gives two linear factors with real coefficients:

𝑥2 − 2 = (𝑥 −
√

2)(𝑥 + ).

Solving 𝑥2 + 4 = 0 gives two linear factors with complex coefficients:

𝑥2 + 4 = (𝑥 − 2 𝑖)(𝑥 + ).
1) To factor 𝑓  into linear and irreducible quadratic factors with real coefficients, keep 

𝑥2 + 4 as is and factor 𝑥2 − 2:

𝑓(𝑥) = (𝑥 −
√

2)(𝑥 +
√

2)(𝑥2 + 4).

1) To factor 𝑓  completely into linear factors with complex coefficients, use all four linear 
factors:

𝑓(𝑥) = (𝑥 −
√

2)(𝑥 +
√

2)(𝑥 − 2 𝑖)(𝑥 + 2 𝑖).
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Exercises

🖊️ Exercise 2.5.1.  Find 𝑥-intercepts (if they exist) and the 𝑦-intercept of the polynomial function.

1) 𝑓(𝑥) = −2𝑥4 + 𝑥2 + 1 2) 𝑓(𝑥) = 𝑥3 + 𝑥2 − 4𝑥 − 4

Answer: 1) 𝑥-intercepts: none; 𝑦-intercept: (0, 1). 2) 𝑥-intercepts: (−2, 0) and (2, 0); 𝑦-intercept: (0, −4).

🖊️ Exercise 2.5.2.  Find all zeros of 𝑓(𝑥) = 2𝑥3 + 5𝑥2 − 11𝑥 + 4.

Answer: The zeros are 1
2 , −4, and 1.
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🖊️ Exercise 2.5.3.  Find a fourth degree polynomial with real coefficients that has zeros of −1, 2, 
1 + 𝑖, such that 𝑓(−2) = 10.

Answer: 𝑓(𝑥) = −(𝑥 + 1)(𝑥 − 2)(𝑥2 − 2𝑥 + 2).

🖊️ Exercise 2.5.4.  Let 𝑓(𝑥) = 𝑥3 − 5𝑥2 + 6𝑥 − 30.

1) Factor 𝑓 into linear and irreducible quadratic factors with real coefficients.

2) Factor 𝑓 completely into linear factors with complex coefficients.

Answer: 1) 𝑓(𝑥) = (𝑥 − 3)(𝑥2 − 2𝑥 + 10). 2) 𝑓(𝑥) = (𝑥 − 3)(𝑥 − 1 − 3 𝑖)(𝑥 − 1 + 3 𝑖).
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 2.6 Graphs of Polynomials

Definition 2.6.1 (Multiplicity of a Zero)

We say a zero 𝑐 of a polynomial function 𝑓  has the multiplicity 𝑘 if 𝑓(𝑥) = (𝑥 − 𝑐)𝑘𝑔(𝑥) 
and 𝑐 is not a zero of 𝑔.

♣︎

Example 2.6.1.  Find the zeros of the polynomial function 𝑓(𝑥) = 𝑥3(𝑥 − 1)2(𝑥 − 2) and 
determine their multiplicities.

Solution.  By the Factor Theorem, we see that the zeros of 𝑓  are
0, , and 2.

By the definition multiplicity, we have

Zeros: 0 1 2
Multiplicities: 3

Example 2.6.2.  A polynomial function 𝑓  of degree 3 has two zeros 1 and 2 with multiplicity 
2 and 1 respectively. The 𝑦-intercept is (0, −4). Find an equation for 𝑃 .

Solution.  Since the zero 1 has multiplicity 2 and the zero 2 has multiplicity 1, we have

𝑓(𝑥) = (𝑥 − 1)2(𝑥 − 2)𝑞(𝑥).
Because the degree of 𝑓  is 3, the degree of 𝑞(𝑥) must be 0, that is, 𝑞(𝑥) = 𝑎, where 𝑎 is a 
constant. Thus, we have

𝑓(𝑥) = 𝑎(𝑥 − )2(𝑥 − ).
To determine the value of 𝑎, we use the condition that the 𝑦-intercept is (0, −4:

𝑓(0) = 𝑎(0 − 1)2(0 − 2) = .
From 𝑓(0) = , we have 𝑎 = 2.

Thus, an equation for 𝑓  is
𝑓(𝑥) = .

Local Graph Near a Zero

Let 𝑓  be a polynomial with positive leading coefficient and 𝑐 is a zero of 𝑓  of multiplicity 
𝑘. Write 𝑓(𝑥) = (𝑥 − 𝑐)𝑘𝑞(𝑥)

The local shape of the graph near 𝑐 is determined by the value of 𝑘 and the sign of 𝑞(𝑐):
Cross touch Snake-cross

𝑐 𝑥

𝑘 = 1,
𝑞(𝑐) > 0

𝑐 𝑥

𝑘 = 1,
𝑞(𝑐) < 0

𝑐 𝑥

𝑘 even,
𝑞(𝑐) > 0

𝑐 𝑥

𝑘 even,
𝑞(𝑐) < 0

𝑐 𝑥

𝑘 > 1 and odd,
𝑞(𝑐) > 0

𝑐 𝑥

𝑘 > 1 and odd,
𝑞(𝑐) < 0
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Chapter 2 Polynomial and Rational Functions 2.6 Graphs of Polynomials

Example 2.6.3.  Use the graph of the function of degree 6 in the figure below to identify 
the zeros of the function and their possible multiplicities.

−3 −2 −1 1 2 3 𝑥

−3

−2

−1

1

2

3

𝑦

0

Solution.  The zeros of the function are −1, 0, and 2.

Because the graph touches the 𝑥-axis at 𝑥 = −1, the 
multiplicity is is even.

Because the graph crosses the 𝑥-axis t 𝑥 = 0, the 
multiplicity is .

Because the graph snake-crosses the 𝑥-axis at 𝑥 = 2, 
the multiplicity is odd and greater than 1.

Because the degree of the polynomial is 6, the zeros 
and their multiplicities are:

Zeros: −1 0 2

Multiplicities: 1

Example 2.6.4.  Find a polynomial of the least degree whose graph is given below.

−4 −3 −2 −1 1 2 𝑥

−4

−3

−2

−1

1

2

𝑦

0

Solution.  From the graph, we see that the zeros are 
−2, 0, and 1.

Because the graph touches the 𝑥-axis at 𝑥 = −2, the 
multiplicity is at least .

Because the graph crosses the 𝑥-axis t 𝑥 = 0, the 
multiplicity is 1.

Because the graph snake-crosses the 𝑥-axis at 𝑥 =
1, the multiplicity is at least .

Thus, an equation for the polynomial of least de
gree is

𝑓(𝑥) = 𝑎𝑥3(𝑥 + 2)2(𝑥 − 1).

Since the point (−1, −2) is on the graph, the coefficient 𝑎 satisfies the equation

𝑓(−1) = 𝑎(−1 + 2)2(−1)2(−1 − 1) = −2.
Solving for 𝑎 gives 𝑎 = . Therefore, an equation for the polynomial is

𝑓(𝑥) = −𝑥3(𝑥 + 2)2(𝑥 − 1).
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Definition 2.6.2 (Continuity of Polynomials)

A function is continuous on an interval if its graph has no breaks there. It is smooth on 
an interval if its graph has no breaks and no sharp corners.

A function is continuous (respectively, smooth) if it is continuous (respectively, smooth) 
on every interval in its domain.

♣︎

Proposition 2.6.3

Polynomial functions and rational functions are smooth functions.
♠︎

Theorem 2.6.4 (Intermediate Value Theorem)

If 𝑓  is continuous on [𝑎, 𝑏] and 𝑓(𝑎)𝑓(𝑏) < 0, then there 
exists at least one 𝑐 between 𝑎 and 𝑏 such that 𝑓(𝑐) = 0.

In particular, this holds for polynomial and rational func
tions.

𝑎

𝑐 𝑏 𝑥

♡

Corollary 2.6.4.1

Let 𝑓  be a polynomial function, and let 𝑎 and 𝑏 be real zeros of 𝑓 . If 𝑓  has no other zeros 
between 𝑎 and 𝑏, then either 𝑓(𝑥) > 0 for all 𝑥 between 𝑎 and 𝑏, or 𝑓(𝑥) < 0 for all 𝑥 
between 𝑎 and 𝑏.

♡

Proof.  Assume, for contradiction, that there exist 𝑐1 and 𝑐2 between 𝑎 and 𝑏 such that 
𝑓(𝑐1)𝑓(𝑐2) < 0. By the Intermediate Value Theorem, there is at least one 𝑑 between 𝑐1 and 
𝑐2 with 𝑓(𝑑) = 0. This contradicts the assumption that 𝑓  has no other zeros between 𝑎 and 
𝑏. Therefore, the corollary holds. ⁠ □

Theorem 2.6.5 (Rolles's Theorem)

Let 𝑓  be a smooth function, 𝑎 and 𝑏 two zeros. Then 𝑓  has 
at lease one local extremum (turning point) between 𝑎 
and 𝑏.

In particular, this holds for polynomial and rational func
tions.

𝑎 𝑐 𝑏 𝑥

♡

Remark

Continuity and smoothness are key concepts in Calculus. The Intermediate Value Theo
rem and Rolle’s Theorem are fundamental tools, but their proofs require concepts of 
limit and derivative, which are beyond the scope of this course.
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Example 2.6.5.  Determine if the polynomial function 𝑓(𝑥) = 5𝑥4 − 2𝑥3 − 20 has a zero on 
the interval [1, 2].

Solution.  Since 1𝑛 = 1, it’s easier to compute 𝑓(1):
𝑓(1) = 5(1)4 − 2(1)3 − 20 = .

For 𝑓(2), we can use the Remainder Theorem together with synthetic division:

2 5 −2 0 0 −20

10

5 16 44

Since 𝑓(1)𝑓(2) < 0 and 𝑓  is continuous over [1, 2], by the Intermediate Value Theorem, 
there exists at least one value 𝑐 between 1 and 2 such that 𝑓(𝑐) = 0.

Example 2.6.6.  The function 𝑓(𝑥) = 𝑥3 − 4𝑥 has the zeros 𝑥 = −2, 𝑥 = 0, and 𝑥 = 2. 
Determine the intervals over which 𝑓(𝑥) > 0.

Solution. 

Because the degree of 𝑓  is , by the Fundamental Theorem of Algebra, 𝑓  has at most 

3 real zeros. Therefore, there are no zeros other than the given ones.

The zeros divide the real line into four intervals: (−∞, −2), (−2, 0), (0, 2), and (2, ∞).

Since 𝑓  is continuous, by the corollary of the Intermediate Value Theorem, the sign of 
𝑓(𝑥) does not change within each interval.

To determine where 𝑓(𝑥) > 0, test a point in each interval. The test values and zeros 
are shown in the figure below. The open circles indicate that the zeros are not included 
because the inequality sign is >.

𝑥
−3 −1 1 3

−2 0 2

Test values ⟶

Zeros ⟶

• For (−∞, −2), let 𝑥 = −3, then 𝑓(−3) 0.

• For (−2, 0), let 𝑥 = −1, then 𝑓(−1) 0.

• For (0, 2), let 𝑥 = 1, then 𝑓(1) 0.

• For (2, ∞), let 𝑥 = 3, then 𝑓(3) 0.

Therefore, 𝑓(𝑥) > 0 on the intervals ∪ .
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Definition 2.6.6 (Guidelines for Graphing Polynomial Functions)

1) Plot the 𝑦-intercept.

2) Find real zeros and their multiplicities; sketch the local graph near each 𝑥-intercept.

3) Determine end behavior and sketch the left and right tails.

4) Test values to check whether the graph lies above or below the 𝑥-axis between zeros; 
estimate turning points.

5) Connect points and local graphs smoothly.
♣︎

Example 2.6.7.  Sketch the graph of the polynomial function

𝑓(𝑥) = 1
12

(𝑥 − 4)(𝑥 − 1)2(𝑥 + 3).

Solution. 

1) The 𝑦-intercept is 𝑓(0) = 1
12(0 − 4)(0 − 1)2(0 + 3) = .

2) The real zeros are −3, 1, and 4 with multiplicities 1, 2, and 1 respectively. The local 
graphs near the 𝑥-intercepts are shown below.

3) Since the degree of 𝑓  is 4 (even) and the leading coefficient is positive, the end 
behavior is: as 𝑥 → −∞, 𝑓(𝑥) → ∞; and as 𝑥 → ∞, 𝑓(𝑥) → ∞.

4) To determine whether the graph lies above or below the 𝑥-axis between zeros, test 
values in each interval:

• For (−∞, −3), let 𝑥 = −4, then 𝑓(−4) = 1
12(−4 − 4)(−4 − 1)2(−4 + 3) = .

• For (−3, 1), let 𝑥 = 0, then 𝑓(0) = 1
12(0 − 4)(0 − 1)2(0 + 3) = .

• For (1, 4), let 𝑥 = 2, then 𝑓(2) = 1
12(2 − 4)(2 − 1)2(2 + 3) = .

Therefore, the graph lies below the 𝑥-axis on , and above on .

5) Using this information, we can sketch the graph of 𝑓  as shown below.

−5 −4 −3 −2 −1 1 2 3 4 5 𝑥

−5

−4

−3

−2

−1

1

2

3

4

5

𝑦

0
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Exercises

🖊️ Exercise 2.6.1.  Find the zeros and their multiplicities of the polynomial function

𝑓(𝑥) = 3𝑥4 − 15𝑥3 + 12𝑥2.

Answer:
Zeros: 0 1 4

Multiplicities: 2 1 1

🖊️ Exercise 2.6.2.  A polynomial function 𝑃  of degree 4 has two zeros 1 and 2 with multiplicity 3 
and 1 respectively. The 𝑦-intercept is (0, −4). Find an equation for 𝑃 .

Answer: 𝑃(𝑥) = −2(𝑥 − 1)3(𝑥 − 2).

🖊️ Exercise 2.6.3.  Find a polynomial of the least degree whose graph is given below.

−3 −2 −1 1 2 3 𝑥

−3

−2

−1

1

2

3

𝑦

0

Answer: 𝑓(𝑥) = −1
4
𝑥2(𝑥 − 1)2(𝑥 + 2)3.
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🖊️ Exercise 2.6.4.  Sketch the graph of the polynomial function

𝑓(𝑥) = −𝑥4 − 𝑥3 + 2𝑥2.

Answer:

−3 −2 −1 1 2 3 𝑥

−3
−2
−1

1
2
3

𝑦

0
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 2.7 Rational Functions

Definition 2.7.1 (Rational Functions)

Let 𝑝(𝑥) and 𝑞(𝑥) be polynomials with deg(𝑞(𝑥)) > 0. The function 𝑓(𝑥) = 𝑝(𝑥)
𝑞(𝑥)  is called a 

rational function. The domain of 𝑓  is {𝑥 ∣ 𝑞(𝑥) ≠ 0}.
♣︎

Example 2.7.1.  Find the domain of 𝑓(𝑥) = 𝑥+3
𝑥2−9  in interval notation.

Solution.  To find the domain of 𝑓 , we need to find the values of 𝑥 such that the denomi
nator is not zero. We have 𝑥2 − 9 = 0

(𝑥 − 3)(𝑥 + 3) = 0
𝑥 = or 𝑥 = .

Therefore, the domain of 𝑓  is (−∞, ) ∪ (−3, ) ∪ (3, ).

Definition 2.7.2 (Asymptotes and Holes)

A vertical asymptote of a function 𝑓  is a vertical line 𝑥 = 𝑎 where the graph of 𝑓  
approaches positive or negative infinity as 𝑥 approaches 𝑎 from the left or right. In 
other words, as 𝑥 → 𝑎− or 𝑎+, 𝑓(𝑥) → ∞ or 𝑓(𝑥) → −∞, where 𝑥 → 𝑎− (or 𝑎+) means 𝑥 
approaches 𝑎 from the left (respectively, right).

A function 𝑓  has a removable discontinuity (or hole) at 𝑥 = 𝑎 if 𝑓(𝑥) → 𝑏 as 𝑥 → 𝑎 but 
𝑓(𝑎) is undefined.

Let 𝑓 = 𝑝(𝑥)
𝑞(𝑥)  be a rational function:

• If 𝑝(𝑎) = 𝑞(𝑎) = 0, then 𝑓  has a hole at 𝑎.

• If 𝑞(𝑎) = 0 but 𝑝(𝑎) ≠ 0, then 𝑓  has a vertical asymptote at 𝑥 = 𝑎.

A slant (oblique) asymptote of a function 𝑓  is a line 𝑦 = 𝑚𝑥 + 𝑏 with 𝑚 ≠ 0 where the 
graph of 𝑓  approaches 𝑚𝑥 + 𝑏 as 𝑥 goes to positive or negative infinity. That is, as 𝑥 →
∞ or 𝑥 → −∞, 𝑓(𝑥) → 𝑚𝑥 + 𝑏.

𝑎 𝑥

𝑦 vertical
asymptote

slant
asymptote

𝑎 𝑥

𝑦 vertical
asymptote

horizontal
asymptote

♣︎
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Chapter 2 Polynomial and Rational Functions 2.7 Rational Functions

How to Find Horizontal and Slanted Asymptotes

Let 𝑓(𝑥) = 𝑝(𝑥)
𝑞(𝑥)

= 𝑎𝑚𝑥𝑚 + 𝑎𝑚−1𝑥𝑚−1 + ... + 𝑎1𝑥 + 𝑎0
𝑏𝑛𝑥𝑛 + 𝑏𝑛−1𝑥𝑛−1 + ... + 𝑏1𝑥 + 𝑏0

 be a rational function.

• If 𝑚 < 𝑛, then 𝑓  has a horizontal asymptote 𝑥 = 0;

• If 𝑚 = 𝑛, then 𝑓  has a horizontal asymptote 𝑥 = 𝑎𝑚
𝑏𝑛

;

• If 𝑚 = 𝑛 + 1, then 𝑓  has a slated asysmptote 𝑦 = 𝑚𝑥 + 𝑏, where 𝑚𝑥 + 𝑏 is the quotient of 
𝑝(𝑥) divided by 𝑞(𝑥).

• If 𝑚 > 𝑛 + 1, then 𝑓  has no horizontal or slated asymptote;

Example 2.7.2.  Find equations for the asymptotes of the function 𝑓  graphed in the figure 
below.

−3 −2 −1 1 2 3 4 5 𝑥

−2

−1

1

2

3

4

5

6

𝑦

0

Solution.  From the graph, we observe:

• As 𝑥 → −∞, 𝑓(𝑥) → 2.

• As 𝑥 → ∞, 𝑓(𝑥) → .

• As 𝑥 → 1−, 𝑓(𝑥) → −∞.

• As 𝑥 → 1+, 𝑓(𝑥) → .

Therefore, 𝑓  has a horizontal asymp
tote  and a vertical asymptote 

.

Example 2.7.3.  Find equations for the asymptotes of the function 𝑓  graphed in the figure 
below.

−3 −2 −1 1 2 3 4 5 𝑥

−4

−3

−2

−1

1

2

3

4

𝑦

0

Solution.  As 𝑥 → 1±, the graph approaches 
the vertical line 𝑥 = . Therefore, 𝑓  
has a vertical asymptote .

As 𝑥 → ±∞, the graph approaches the 
slanted line. Therefore, 𝑓  has a slanted 
asymptote.

Because the slanted line passes through
( , 0) and (0, ),

an equation of the slanted line is
𝑦 = 𝑥 − 1.
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Example 2.7.4.  Find the asymptotes of the function 𝑓(𝑥) = 𝑥2 + 1
2𝑥2 − 3𝑥 + 1

.

Solution.  Since the degree of the numerator is equal to the degree of the denominator, 
𝑓  has a horizontal asymptote at

𝑦 = .
To find vertical asymptotes, set the denominator equal to zero and solve for 𝑥:

2𝑥2 − 3𝑥 + 1 = 0
(2𝑥 − 1)(𝑥 − 1) = 0

𝑥 = or 𝑥 = .
Therefore, 𝑓  has vertical asymptotes at

𝑥 = and 𝑥 = .

Example 2.7.5.  Find the asymptotes of the function 𝑓(𝑥) = −𝑥2 + 3𝑥 − 1
𝑥 − 1

.

Solution.  Since the degree of the numerator is one more than the degree of the denom
inator, 𝑓  has a slant asymptote. Using polynomial long division or synthetic division, we 
have

−𝑥2 + 3𝑥 − 1
𝑥 − 1

= + 1
𝑥 − 1

.

Therefore, an equation of the slant asymptote is
𝑦 = 𝑥 + .

To find vertical asymptotes, set the denominator equal to zero and solve for 𝑥:
𝑥 − 1 = 0

𝑥 = .
Therefore, 𝑓  has a vertical asymptote at

𝑥 = .

Example 2.7.6.  Find the asymptotes and holes of the function 𝑓(𝑥) = 𝑥2 + 𝑥 − 6
𝑥3 − 2𝑥2 − 𝑥 + 2

.

Solution.  Factor the numerator and denominator:

𝑓(𝑥) = (𝑥 + 3)(𝑥 − 2)
(𝑥 − 2)(𝑥 + 1)(𝑥 − 1)

.

Since 𝑥 − 2 is a common factor in the numerator and denominator, 𝑓  has a hole at
𝑥 = .

The vertical asymptotes are determined by zeros of the denominator after canceling 
common factors. The denominator of the reduced form of 𝑓(𝑥) is (𝑥 + 1)( ). 
Therefore, the vertical asysmptotes of 𝑓  are

𝑥 = and 𝑥 = .
Since the degree of the numerator is less than the degree of the denominator, 𝑓  has a 
horizontal asymptote at

𝑦 = .
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Definition 2.7.3 (Guidelines for Graphing Rational Functions)

1) Find the 𝑦-intercept and plot it.

2) Find the 𝑥-intercept(s) and plot them.

3) Identify all vertical asymptotes and draw them as dashed lines.

4) Determine whether the function has a horizontal or slant asymptote (or neither), and 
draw the asymptote as a dashed line.

5) In each interval between consecutive zeros of the denominator or the function, 
choose a test point to determine whether the graph lies above or below the 𝑥-axis.

6) Sketch the graph using all the information above.
♣︎

Example 2.7.7.  Sketch a graph of 𝑓(𝑥) = (𝑥 + 2)(𝑥 − 3)
(𝑥 + 1)2(𝑥 − 2)

.

Solution. 

1) The 𝑦-intercept is (0, 𝑓(0)) = .

2) The 𝑥-intercepts are found by setting the numerator equal to zero:
(𝑥 + 2)(𝑥 − 3) = 0
𝑥 = or 𝑥 = .

Therefore, the 𝑥-intercepts are  and .

3) The vertical asymptotes are found by setting the denominator equal to zero:

(𝑥 + 1)2(𝑥 − 2) = 0
𝑥 = or 𝑥 = .

Therefore, the vertical asymptotes are  and .

4) Since the degree of the numerator is less than the degree of the denominator, 𝑓  has 
a horizontal asymptote at

𝑦 = .

5) To determine whether the graph lies above or below the 𝑥-axis in each interval deter
mined by the vertical asymptotes and 𝑥-intercepts, we choose test values:
• For (−∞, −2), let 𝑥 = −3, then

𝑓(−3) = (−3 + 2)(−3 − 3)
(−3 + 1)2(−3 − 2)

0.

• For (−2, −1), let 𝑥 = −1.5, then

𝑓(−1.5) = (−1.5 + 2)(−1.5 − 3)
(−1.5 + 1)2(−1.5 − 2)

0.

• For (−1, 2), let 𝑥 = 0, then

𝑓(0) = (0 + 2)(0 − 3)
(0 + 1)2(0 − 2)

0.

• For (2, ∞), let 𝑥 = 3, then
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𝑓(3) = (3 + 2)(3 − 3)
(3 + 1)2(3 − 2)

0.

Therefore, the graph lies above the 𝑥-axis on ∪ , and below 
on ∪ .

6) Using this information, we can sketch the graph of 𝑓  as shown below.

−8 −7 −6 −5 −4 −3 −2 −1 1 2 3 4 5 6 7 8 𝑥

−4

−3

−2

−1

1

2

3

4

𝑦

0
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Exercises

🖊️ Exercise 2.7.1.  Find asymptotes of the rational function

𝑓(𝑥) = 3𝑥2 − 1
𝑥2 + 4𝑥 − 5

.

Answer: Horizontal asymptote: 𝑦 = 3. Vertical asymptotes: 𝑥 = 1 and 𝑥 = −5.

🖊️ Exercise 2.7.2.  Find asymptotes of the rational function 𝑓(𝑥) = 𝑥2

𝑥+1 .

Answer: Slant asymptote: 𝑦 = 𝑥 − 1. Vertical asymptote: 𝑥 = −1.
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🖊️ Exercise 2.7.3.  Sketch a graph of the rational function 𝑓(𝑥) = (𝑥+2)2(𝑥−1)
(𝑥+1)2(𝑥−2) .

Answer:

−8−7−6−5−4−3−2−1 1 2 3 4 5 6 7 8 𝑥

−5
−4
−3
−2
−1

1
2
3
4
5

𝑦

0
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 2.8 Nonlinear Inequalities

Definition 2.8.1 (Guidelines for Solving Polynomial or Rational Inequalities)

1) Rewrite the inequality in one of the following forms, according to the original inequal
ity: 𝑓(𝑥) > 0, 𝑓(𝑥) ≥ 0, 𝑓(𝑥) < 0, or 𝑓(𝑥) ≤ 0.

2) Find all real zeros of 𝑓(𝑥).

3) Divide the DOMAIN OF THE FUNCTION (the entire real line if 𝑓  is a polynomial) into 
intervals using the zeros found in the previous step.

4) Choose a test point from each interval to determine the sign of 𝑓(𝑥).

5) Identify the solution set as the union of intervals where the test point satisfies the 
inequality, and decide whether to include the boundary points.

♣︎

Example 2.8.1.  Solve the inequality 𝑥2 ≤ 7𝑥 − 6.

Solution.  Rewrite the inequality as
≤ 0.

To find the zeros of 𝑓(𝑥) = 𝑥2 − 7𝑥 + 6, set 𝑓(𝑥) = 0:

𝑥2 − 7𝑥 + 6 = 0
(𝑥 − 6)(𝑥 − 1) = 0
𝑥 = or 𝑥 = .

The zeros divide the real line into three intervals:
(−∞, 1), (1, 6), and (6, ∞).

Choose a test point from each interval to determine the sign of 𝑓(𝑥):

• For (−∞, 1), let 𝑥 = 0, then 𝑓(0) = .

• For (1, 6), let 𝑥 = 3, then 𝑓(3) = .

• For (6, ∞), let 𝑥 = 7, then 𝑓(7) = .

Therefore, the solution set is ∪ .

Example 2.8.2.  Solve the inequality 
6𝑥

(𝑥 + 1)(𝑥 + 2)
≥ 1.

Solution.  Rewrite the inequality as
6𝑥

(𝑥 + 1)(𝑥 + 2)
− 1 ≥ 0.

Let

𝑓(𝑥) = 6𝑥
(𝑥 + 1)(𝑥 + 2)

− 1 =
(𝑥 + 1)(𝑥 + 2)

.

We need to find the zeros and the domain of 𝑓 .

To find the zeros of 𝑓(𝑥), set the numerator equal to zero and solve for 𝑥:
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Chapter 2 Polynomial and Rational Functions 2.8 Nonlinear Inequalities

−𝑥2 + 3𝑥 − 2 = 0
(𝑥 − 1)(𝑥 − 2) = 0
𝑥 = or 𝑥 = .

To find the domain of 𝑓(𝑥), set the denominator equal to zero and solve for 𝑥:
(𝑥 + 1)(𝑥 + 2) = 0
𝑥 = or 𝑥 = .

The domain of 𝑓  is
(−∞, −2) ∪ (−2, −1) ∪ (−1, ∞).

The zeros divide the domain of 𝑓  into four intervals:
(−∞, −2), (−2, −1), (−1, 1], [1, 2] and [2, ∞).

Note the reason we use square brackets for the last two intervals is that the original 
inequality is a “greater than or equal to” inequality. Correspondingly, circles are used for 
an open boundary point and solid dots for a closed boundary point in the figure below.

𝑥
−3 −1.5 0 3Test values ⟶

Zeros ⟶ −1−2 1 2

Choose a test point from each interval to determine the sign of 𝑓(𝑥):

• For (−∞, −2), let 𝑥 = −3, then 𝑓(−3) = .

• For (−2, −1), let 𝑥 = −1.5, then 𝑓(−1.5) = .

• For (−1, 1), let 𝑥 = 0, then 𝑓(0) = .

• For (2, ∞), let 𝑥 = 3, then 𝑓(3) = .

Therefore, the solution set is ∪ .

Remark

In the previous examples, note that we determined the sign of 𝑓(𝑥) instead of the value 
of 𝑓(𝑥). This is because we are only interested in whether 𝑓(𝑥) is positive, negative, or 
zero to solve the inequality.
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Exercises

🖊️ Exercise 2.8.1.  Solve the inequality −𝑥2 > 5𝑥 − 6.

Answer: (−6, 1).

🖊️ Exercise 2.8.2.  Solve the inequality 2𝑥3 + 𝑥2 ≤ 2𝑥 + 1.

Answer: (−∞, −1] ∪ [1
2 , ∞).
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🖊️ Exercise 2.8.3.  Solve the inequality 1 ≥ 𝑥 − 1
2𝑥 + 1

.

Answer: (−∞, −2] ∪ (−1
2 , ∞).

🖊️ Exercise 2.8.4.  Solve the inequality 
𝑥 + 8
𝑥2 − 4

< 1.

Answer: (−∞, −3) ∪ (−2, 2) ∪ (4, ∞).
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 3.1 Exponential Functions

Definition 3.1.1 (Exponential Functions)

For any real number 𝑥 (the exponent), an exponential function 𝑓  of 𝑥 is a function 
defined by an equation

𝑓(𝑥) = 𝑏𝑥,
where 𝑏 is a positive real number, called the base, such that 𝑏 ≠ 1.

♣︎

Properties of Exponential Functions

Consider the exponential function 𝑓(𝑥) = 𝑏𝑥, 
where 𝑏 > 0, and 𝑏 ≠ 1.

• The domain of 𝑓  is (−∞, ∞), and the range of 𝑓  
is (0, ∞).

• The 𝑦-intercept of 𝑓  is (0, 1), and the function has 
a horizontal asymptote 𝑦 = 0.

• The function 𝑓  is increasing if 𝑏 > 1 or decreas
ing if 0 < 𝑏 < 1.

−4 −3 −2 −1 1 2 3 4 𝑥

−3

−2

−1

1

2

3

4

5

𝑦

0

𝑓(𝑥) = 2𝑥

increasing
𝑓(𝑥) = (1

2)𝑥

decreasing

Example 3.1.1.  The population of India was about 1.25 billion in the year 2013, with an 
annual growth rate of about 1.2%. This situation is represented by the growth function 
𝑃(𝑡) = 1.25(1.012)𝑡, where 𝑡 is the number of years since 2013. To the nearest thousandth, 
what will the population of India be in 2031?

Solution.  In the year 2031, 𝑡 = 2031 − 2013 = . To find the population after 18 years, 
evaluate 𝑃  at 𝑡 = 18:

𝑃(18) = 1.25(1.012) ≈ 1.518 billion.
Thus, to the nearest thousandth, the population of India in 2031 is approximately 1.518 
billion.

Remark

When modeling real-world situations with exponential functions, an initial value factor is 
often included in the function. A common general form used in applications is:

𝑓(𝑡) = 𝑎𝑏𝑡,
where 𝑎 represents the initial value and 𝑏 is the base of the exponential growth or decay. If 
𝑏 > 1, the function models exponential growth; if 0 < 𝑏 < 1, it models exponential decay.
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Example 3.1.2.  In 2006, 80 deer were introduced into a wildlife refuge. By 2012, the 
population had grown to 180 deer. The population was growing exponentially. Write an 
algebraic function 𝑁(𝑡) representing the population 𝑁  of deer over time 𝑡.

Solution.  Since the population growing exponentially, we can model the population by 
the function

𝑁(𝑡) = 𝑎𝑏𝑡,
where 𝑎 is the initial population, and 𝑏 is the growth factor. Since the initial population is 
80 deer, we take 𝑎 = 80. Thus,

𝑁(𝑡) = 80𝑏𝑡.
To find 𝑏, we use the information that after  years (from 2006 to 2012), the popu

lation is 180 deer. Thus,

180 = 𝑁(6) = 80𝑏6.
Solving for 𝑏, we get

𝑏6 = 180
80

𝑏 = (9
4
)

𝑏 ≈ 1.144.
Therefore, the population of deer over time 𝑡 is modeled by the function

𝑁(𝑡) = .

Example 3.1.3.  Find an exponential function 𝑓(𝑥) = 𝑎𝑏𝑥 that passes through the points 
(−2, 6) and (2, 1). Round to three decimal places.

Solution.  From the given points, we have the system of equations

{6 = 𝑎𝑏−2

1 = 𝑎𝑏2

Dividing the first equation by the second and solving for 𝑏 gives:

6
1

= 𝑎𝑏−2

𝑎𝑏2

6 =

𝑏4 = 1
6

𝑏 = (1
6
) ≈ 0.638.

Multiplying the first equation with the second and solving for 𝑎 gives:

6 = 𝑎2

𝑎 = ≈ 2.449.
Thus, an exponential function that passes through the given points is

𝑓(𝑥) = .
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Example 3.1.4.  Find an exponential function 𝑓(𝑥) = 𝑎𝑏𝑥 graphed in the following figure.

−4 −3 −2 −1 1 2 3 4 𝑥
−1

1

2

3

4

5

6

7

𝑦

0

Solution.  Two points are needed to find the values 
of 𝑎 and 𝑏. Since the 𝑦-intercept is (0, −3), the initial 
value is

𝑎 = .
On the graph, there is another point (1, −6). Substi
tuting into the equation and solving for 𝑥 gives:

−6 = −3𝑏1

𝑏 = −6
−3

= .

Therefore, an equation of the graphed function is
𝑓(𝑥) = .

Definition 3.1.2 (The Number e)

The natrual number, denoted by 𝑒, the number that (1 + 1
𝑛)𝑛

 approaches to as 𝑛 
increases without bound. Approximately, 𝑒 ≈ 2.718282.

♣︎

Example 3.1.5.  Evaluate using a calculator. Round to five decimal places.

1) 𝑒2 2) 𝑒−1
2 3) 𝑒𝜋

Solution. 

1) 𝑒2 ≈ 2) 𝑒−1
2 ≈ 3) 𝑒𝜋 ≈

Investment Models

Let 𝑃  be the initial amount of the account, known as the principal, 𝑟 the annual interest 
rate, and 𝑡 is the number of years. The balance 𝐴 after 𝑡 years is

• 𝐴(𝑡) = 𝑃(1 + 𝑟
𝑛)𝑛𝑡

 if the interest is compounded 𝑛 times per year.

• 𝐴(𝑡) = 𝑃𝑒𝑟𝑡 if the interest is compounded continuously (𝑛 → ∞).

Example 3.1.6.  If $3, 000 is invested in a savings account paying 3% interest compounded 
quarterly, how much will the account be worth in 10 years?

Solution.  Here, 𝑃 = , 𝑟 = , 𝑛 = , and 𝑡 = . Using the formula for 
compound interest, we have

𝐴(10) = 3000(1 + 0.03
4

)
4⋅10

≈ .

Thus, the account will be worth approximately $  in 10 years.
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Example 3.1.7.  A person invested $1, 000 in an account earning 10% per year com
pounded continuously. How much was in the account at the end of two and a half year?

Solution.  Here, 𝑃 = , 𝑟 = , and 𝑡 = . Using the formula for continuous 
compounding, we have

𝐴(2.5) = 1000𝑒0.10⋅2.5 ≈ .
Thus, the account will be worth approximately $  at the end of two and a half 
years.

Example 3.1.8.  A 529 Plan is a college-savings plan that allows relatives to invest money 
to pay for a child’s future college tuition; the account grows tax-free. Lily wants to set 
up a 529 account for her new granddaughter and wants the account to grow to $40, 000 
over 18 years. She believes the account will earn 6% compounded semi-annually (twice a 
year). To the nearest dollar, how much will Lily need to invest in the account now?

Solution.  Here, 𝑡 = 10, 𝐴(10) = , 𝑟 = , and 𝑛 = . Using the formula 
for compound interest, we have

40000 = 𝑃(1 + 0.06
2

)
2⋅18

.

Solving for 𝑃 , we get

𝑃 = 40000
(1 + 0.06

2 )36 ≈ .

Thus, Lily will need to invest approximately $  in the account now.

Continuous Growth/Decay Model

When modeling continuous growth or decay, the number 𝑒 is usually used as the base 
of the exponential function: 𝐴(𝑡) = 𝐴0𝑒𝑘𝑡, where 𝐴0 is the initial amount and 𝑘 is the 
continuous growth rate (if 𝑘 > 0) or decay rate (if 𝑘 < 0), expressed as a decimal, 𝑡 is the 
time and 𝐴(𝑡) is the amount after time 𝑡.

Example 3.1.9.  Radon-222 decays at a continuous rate of 17.3% per day. How much will 
100𝑚𝑔 of Radon-222 decay to in 3 days? Round to the nearest hundredth.

Solution.  The decay of Radon-222 can be modeled by the function

𝐴(𝑡) = 𝐴0𝑒𝑘𝑡,
where 𝐴(𝑡) is the amount remaining after time 𝑡, 𝐴0 =  is the initial amount, and 
𝑘 =  is the continuous rate of decay (as a negative decimal).

Therefore, the remaining amount after 3 days is given by

𝐴(3) = 100𝑒−0.173⋅3 ≈ .
After 3 days, approximately 59.51 mg of Radon-222 will remain.
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Exercises

🖊️ Exercise 3.1.1.  A vehicle depriciates according to the formula: 𝑣 = 27500(3.42)−.04𝑥 where 𝑥 is 

the age of the car in years. Find the value of the car when it is 14-years old.

Answer: 𝑣 = 27500(3.42)−.04·14 ≈ $13812.684.

🖊️ Exercise 3.1.2.  Find an exponential function 𝑓(𝑥) = 𝑎𝑏𝑥 that passes through the points (−2, −6) 
and (−1, −3).

Answer: 𝑓(𝑥) = −3
2(1

2)𝑥 = −3(1
2)𝑥+1

.

🖊️ Exercise 3.1.3.  Find an exponential function 𝑓(𝑥) = 𝑎𝑏𝑥 graphed in the following figure.

−4 −3 −2 −1 1 2 3 4 𝑥

−7

−6

−5

−4

−3

−2

−1

1

𝑦

0

Answer: 𝑓(𝑥) = −3 ⋅ 2𝑥.
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🖊️ Exercise 3.1.4.  A wolf population is growing exponentially. In 2011, 129 wolves were counted. By 

2013, the population had reached 236 wolves. What two points can be used to derive an exponential 

equation modeling this situation? Write the equation representing the population 𝑁  of wolves over 

time 𝑡.

Answer: 𝑁(𝑡) = 129(√236
129)

𝑡
≈ 129(1.353)𝑡.

🖊️ Exercise 3.1.5.  A scientist begins with 100 milligrams of a radioactive substance that decays 

exponentially. After 35 hours, 50 mg of the substance remains. How many milligrams will remain 

after 54 hours?

Answer: 𝐴(54) = 100(1
2)

54
35 ≈ 34.321 mg.

84 / 224 PreCalculus Workbook

https://creativecommons.org/licenses/by-nc-sa/4.0/


Chapter 3 Exponential and Logarithmic Functions Exercises

🖊️ Exercise 3.1.6.  An account is opened with an initial deposit of $6, 500 and earns 3.6% interest.

1) What will the account be worth in 20 years if the interest is compounded monthly.

2) What will the account be worth in 20 years if the interest is compounded continuously.

Answer: 1) 𝐴(20) = 6500(1 + 0.036
12 )12⋅20 ≈ $13339.43. 2) 𝐴(20) = 6500𝑒0.036⋅20 ≈ $13353.82.
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 3.2 Logarithmic Functions

Definition 3.2.1 (Logarithmic Functions)

Let 𝑦 = 𝑏𝑥 be an exponential function, where 𝑏 > 0 and 𝑏 ≠ 1. Its inverse is called the 
logarithmic function with base 𝑏, written as: 𝑦 = log𝑏 𝑥.

The notation log𝑏 𝑥 is read as “log base 𝑏 of 𝑥.” The value of log𝑏 𝑥 is called the logarithm 
of 𝑥 to the base 𝑏, and 𝑥 is called the argument of the logarithm.

♣︎

Basic Properties of a Logarithmic Function

For 𝑏 > 0 and 𝑏 ≠ 1, as the functions 𝑦 = 𝑏𝑥 and 𝑦 = log𝑏 𝑥 are inverses of each other, in 
particular, 𝑦 = 𝑏𝑥 and 𝑥 = log𝑏 𝑦 are equivalent equations. Moreover,

1) 𝑏log𝑏 𝑥 = 𝑥 for 𝑥 > 0.

2) log𝑏(𝑏𝑥) = 𝑥 for all real numbers 𝑥, in particular,
log𝑏 𝑏 = 1 and log𝑏 1 = 0.

Example 3.2.1.  Write the following logarithmic equality in exponential form.

1) log2(𝑥) = 3 2) log𝑥(5) = 1
3

Solution. 

1) = 𝑥 2) = 5

Example 3.2.2.  Use the exponential form to evaluate the logarithm.

1) log2 4 2) log2
√

2 3) log9 3 4) log5( 1
25)

Solution. 

1) log2 4 = log2 22 =

2) log2
√

2 = log2 2 =

3) log9 3 = log9 9 =

4) log5( 1
25) = log5 5 =

Definition 3.2.2 (Common and Natural Logarithms)

A common logarithm is a logarithm with base 10. We write log10(𝑥) simply as log(𝑥).

A natural logarithm is a logarithm with base 𝑒, the natrual number. We write log𝑒(𝑥) 
simply as ln(𝑥).

♣︎
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Example 3.2.3.  Evaluate the logarithm without using a calculator.

1) log(1000) 2) ln(𝑒2)

Solution. 

1) log(1000) = log(10 ) = 2) ln(𝑒2) =

Example 3.2.4.  Evaluate the logarithm using a calculator.

1) log 2 2) ln 2

Solution. 

1) log 2 ≈ 2) ln 2 ≈

Domains and Ranges of Logarithmic Functions

Consider the logarithmic function 𝑓(𝑥) = log𝑏 𝑥, 
where 𝑏 > 0 and 𝑏 ≠ 1.

• The domain of 𝑓  is (0, ∞), and its range is 
(−∞, ∞).

• The 𝑥-intercept is (1, 0), and the function has a 
vertical asymptote at 𝑥 = 0. Note that 0 is the 
finite boundary of the domain.

• The function 𝑓  is increasing if 𝑏 > 1 and de
creasing if 0 < 𝑏 < 1.

−3 −2 −1 1 2 3 4 5 𝑥

−4

−3

−2

−1

1

2

3

4

𝑦

0

𝑓(𝑥) = 2𝑥

increasing

𝑓(𝑥) = −3𝑥

decreasing

Example 3.2.5.  Find the domain of each function:

1) 𝑓(𝑥) = log3(3 − 2𝑥) 2) 𝑓(𝑥) = log(𝑥+1
𝑥−2)

Solution. 

1) For 𝑓(𝑥) = log3(3 − 2𝑥), the domain is determined by:
3 − 2𝑥 > 0.

Solving the inequality gives: 𝑥 < .

So the domain is: (−∞, ).

2) For 𝑓(𝑥) = log(𝑥+1
𝑥−2), the domain is determined by:

𝑥 + 1
𝑥 − 2

> 0.

Solve using the test-point method:
• Critical points: 𝑥 = −1 and 𝑥 = 2, giving intervals (−∞, −1), (−1, 2), and (2, ∞).
• Testing each interval shows that the inequality holds over ( , −1) ∪ (2, ).

Therefore, the domain of 𝑓  is (−∞, ) ∪ ( , ∞).
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Example 3.2.6.  Find an equation for the function 𝑦 = log𝑏 𝑥 whose graph is shown below.

−1 1 2 3 4 5 𝑥

−3

−2

−1

1

2

3

𝑦

0

Solution.  Since the logarithmic function has the 
form 𝑦 = log𝑏 𝑥, we need to determine the base 𝑏. 
Use another point on the graph, for example (3, 1).

Substituting into the equation and solving for 𝑏 
gives:

1 = log𝑏 3

𝑏 = 31 = .
Therefore, the equation of the function is: 𝑦 =

.

Example 3.2.7.  Find an equation for the function 𝑦 = log𝑏(𝑥 − 𝑎) whose graph is shown 
below.

−1 1 2 3 4 5 𝑥

−3

−2

−1

1

2

3

𝑦

0

Solution.  Two points are needed to determine the 
base 𝑏 and the horizontal shift 𝑎. From the graph, 
the 𝑥-intercept is (2, 0), so:

2 − 𝑎 = 1
𝑎 = .

On the graph there is another point (3, 1). Substi
tuting into the equation and solving for 𝑏:

1 = log𝑏(3 − 1)
𝑏 = .

Therefore, the equation of the function is:
𝑦 = .

Example 3.2.8.  Find the 𝑥-intercept and the vertical asymptote of 𝑓(𝑥) = − log3(𝑥 + 4)

Solution.  The function is obtained by applying a horizontal shift and a vertical reflection 
to the basic logarithmic function 𝑦 = log3 𝑥. A vertical reflection preserves vertical lines 
and the 𝑥-axis, so the 𝑥-intercept and vertical asymptote shift accordingly.

Since the 𝑥-intercept of 𝑦 = log3 𝑥 is (1, 0) and its vertical asymptote is 𝑥 = 0, the 𝑥-
intercept and vertical asymptote of 𝑓(𝑥) = − log3(𝑥 + 4) are determined by:

𝑥 + 4 = 1 𝑥 + 4 = 0
𝑥 = 𝑥 =

Therefore, the 𝑥-intercept is ( , 0) and the vertical asymptote is 𝑥 = .
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Exercises

🖊️ Exercise 3.2.1.  Write the following logarithmic equality in exponential form.

1) log4 2 = 𝑥 2) log3(𝑥) = 2 3) log𝑥(2) = 1
2

Answer: 1) 4𝑥 = 2 2) 32 = 𝑥 3) 𝑥1
2 = 2

🖊️ Exercise 3.2.2.  Evaluate the logarithm using a calculator.

1) log 3 2) ln 5 3) log 5
ln 3

Answer: 1) log 3 ≈ 0.47712 2) ln 5 ≈ 1.60944 3)
log 5
ln 3 ≈ 0.63623

🖊️ Exercise 3.2.3.  Find the domain of the function.

1) 𝑓(𝑥) = log2(2𝑥 − 1) 2) 𝑓(𝑥) = ln(9 − 4𝑥2) 3) 𝑓(𝑥) = log(𝑥−1
𝑥−2)

Answer: 1) Domain: (1
2 , ∞) 2) Domain: (−3

2 , 3
2) 3) Domain: (−∞, 1) ∪ (2, ∞)
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🖊️ Exercise 3.2.4.  Find an equation for the function 𝑦 = − log𝑏 𝑥 whose graph is shown below.

−1 1 2 3 4 5 𝑥

−3

−2

−1

1

2

3

𝑦

0

Answer: 𝑦 = − log4 𝑥.

🖊️ Exercise 3.2.5.  Find the vertical asymptote of 𝑓(𝑥) = −3 log2(2𝑥 − 1) + 1

Answer: 𝑥 = 1
2 .
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 3.3 Review of Properties of Logarithms

Properties of Logarithms

Assume 𝑀 > 0, 𝑁 > 0, 𝑏 > 0 and 𝑏 ≠ 1. Then

Product Rule:
log𝑏(𝑀𝑁) = log𝑏 𝑀 + log𝑏 𝑁.

Quotient Rule:

log𝑏(
𝑀
𝑁

) = log𝑏 𝑀 − log𝑏 𝑁.

Power Rule:
log𝑏(𝑀𝑝) = 𝑝 log𝑏 𝑀,

where 𝑝 is any real number.

Change-of-base Property:

log𝑏 𝑀 = log𝑎 𝑀
log𝑎 𝑏

,

where 𝑎 > 0 and 𝑎 ≠ 1. In particular,

log𝑏 𝑀 = log 𝑀
log 𝑏

and log𝑏 𝑀 = ln 𝑀
ln 𝑏

.

Example 3.3.1.  Expand the logarithmic expression.

1) log3(30𝑥(3𝑥 + 4)) 2) log(
√

𝑥2 + 1) 3) ln(𝑥4(𝑦−1)
𝑥2+1 )

Solution. 

1)
log3(30𝑥(3𝑥 + 4)) = log3 30 + log3 𝑥 + log3( )

= log3 3 + log3 10 + log3 𝑥 + log3 3 + log3(𝑥 + 4)
= + log3 10 + log3 𝑥 + log3(𝑥 + 4).

2)

log(√𝑥2 + 1) = log (𝑥2 + 1)

= log(𝑥2 + 1).

3)

ln(𝑥4(𝑦 − 1)
𝑥2 + 1

) = ln(𝑥4( )) − ln( )

= ln(𝑥4) + ln(𝑦 − 1) − ln(𝑥2 + 1)

= ln(𝑥) + ln(𝑦 − 1) − ln(𝑥2 + 1).
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Example 3.3.2.  Condense the logarithmic expression.

1) log2(𝑥2) + 1
2 log2(𝑥 − 1) − 3 log2((𝑥 + 3)2) 2) 3 ln(𝑥) − 1

2 ln(𝑥 + 1) − 2 ln(
√

𝑥2 + 3)

Solution. 

1)

log2(𝑥2) + 1
2

log2(𝑥 − 1) − 3 log2((𝑥 + 3)2)

= log2(𝑥2) + log2 (𝑥 − 1) − log2((𝑥 + 3)2⋅3)

= log2
𝑥2( )

= log2
𝑥2√𝑥 − 1
(𝑥 + 3)6 .

2)

3 ln(𝑥) − 1
2

ln(𝑥 + 1) − 2 ln(√𝑥2 + 3)

= ln(𝑥3) − ln (𝑥 + 1) − ln((√𝑥2 + 3) )

= ln(𝑥3) − ln(
√

𝑥 + 1) − ln( )

= ln 𝑥3

√(𝑥 + 1)(𝑥2 + 3)
.
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Exercises

🖊️ Exercise 3.3.1.  Expand the logarithmic expression.

1) log6(
64𝑥3(4𝑥 + 1)

(2𝑥 − 1)
) 2) ln(

√(𝑥 − 1)(2𝑥 + 1)2

(𝑥2 − 9)
)

Answer: 1) 6 log6 2 + 3 log6 𝑥 + log6(4𝑥 + 1) − log6(2𝑥 − 1). 2) 1
2 ln(𝑥 − 1) + 2 ln(2𝑥 + 1) − ln(𝑥 − 3) − ln(𝑥 + 3).

🖊️ Exercise 3.3.2.  Condense the logarithmic expressions.

1) 3 log(𝑥) + log(𝑥 + 5) − log(2𝑥 + 3) 2) 2 log 𝑥 − 4 log(𝑥 + 5) + 1
3 log(3𝑥 + 5)

Answer: 1) log(𝑥2(𝑥+5)
2𝑥+3 ). 2) log(𝑥2 3√3𝑥+5

(𝑥+5)4 ).
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 3.4 Exponential and Logarithmic Equations

Guidelines to Solve Exponential Equations

1) Isolate the exponential expression on one side of the equation.

2) Take the logarithm of both sides—preferably with the same base as the exponential, 
but any consistent base (e.g., common log or natural log) may be used.

3) Solve the resulting algebraic equation.

Example 3.4.1. Solve

1) 3𝑥+1 = 4 2) 2𝑥−1 = 4𝑥−2 3) 5𝑥+2 = 4𝑥

Solution. 

1) 3𝑥+1 = 4
= log3 4

𝑥 = log3 4 − 1.

2) 2𝑥−1 = 4𝑥−2

𝑥 − 1 = (𝑥 − 2)
𝑥 − 1 = 2(𝑥 − 2)
𝑥 − 1 = 2𝑥 +

𝑥 = .

3) 5𝑥+2 = 4𝑥

ln 5(𝑥 + 2) = 𝑥
𝑥 ln 5 + = 𝑥 ln 4

𝑥( ) = −2 ln 5

𝑥 = −2 ln 5
ln 5 − ln 4

.

Example 3.4.2.  Solve

1) 100 = 20𝑒2𝑡 2) 4𝑒2𝑥 + 5 = 12 3) 𝑒2𝑥 − 𝑒𝑥 = 56

Solution. 

1) 100 = 20𝑒2𝑡

= 𝑒2𝑡

ln 5 =

𝑡 = ln 5
2

.

2) 4𝑒2𝑥 + 5 = 12
4𝑒2𝑥 =

𝑒2𝑥 = 7
4

= ln(7
4
)

𝑥 = 1
2

ln(7
4
).

3) 𝑒2𝑥 − 𝑒𝑥 = 56
(𝑒𝑥)2 − 𝑒𝑥 − 56 = 0

(𝑒𝑥 − 8)(𝑒𝑥 + ) = 0
𝑒𝑥 − 8 = 0 or 𝑒𝑥 + 7 = 0

𝑒𝑥 = or no solution
𝑥 = .
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Guidelines to Solve Logarithmic Equations

1) Isolate the logarithmic expression (use log properties if needed).

2) Exponentiate both sides using the logarithm’s base.

3) Solve the resulting equation.

4) Check solutions in the original equation—discard any outside the domain of the 
logarithms.

Example 3.4.3.  Solve

1) 2 ln 𝑥 + 3 = 7 2) ln(𝑥2) = ln(2𝑥 + 3) 3) ln(𝑥) − ln(𝑥 + 3) = ln 6

Solution. 

1)
2 ln 𝑥 + 3 = 7

2 ln 𝑥 =
ln 𝑥 =

𝑥 = .
Check: Because 𝑥 = 𝑒2 > 0 is in the domain of the original equation. So, 𝑥 = 𝑒2 is a 
solution.

2)
ln(𝑥2) = ln(2𝑥 + 3)

𝑥2 = 2𝑥 + 3
𝑥2 − 2𝑥 − 3 = 0

( )(𝑥 + 1) = 0
𝑥 − 3 = 0 or 𝑥 + 1 = 0

𝑥 = or 𝑥 =
When 𝑥 = 3, both 𝑥2 = 9 > 0 and 2𝑥 + 3 = 9 > 0. So, 𝑥 = 3 is a solution.
When 𝑥 = −1, both 𝑥2 = 1 and 2𝑥 + 3 = > 0. So, 𝑥 = −1 is also a solution.

3)
ln(𝑥) − ln(𝑥 + 3) = ln 6

ln( 𝑥
𝑥 + 3

) = ln 6

𝑥
𝑥 + 3

= 6

𝑥 = 6(𝑥 + 3)
−5𝑥 =

𝑥 = .
Check: Since 𝑥 = −18

5 < 0 is not in the domain of ln 𝑥, it is an extraneous solution and 
must be discarded. The equation has no solution.
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Example 3.4.4.  An account with an initial deposit of $6, 500 earns 7.25% annual interest, 
compounded monthly. After how many years, the balance will be doubled. Round your 
answer to the nearest hundredth.

Solution.  Let 𝐴(𝑡) be the amount in the account after 𝑡 years. Using the compound interest 
formula:

𝐴(𝑡) = 6500(1 + 0.0725
12

)
12𝑡

.

The number of years it takes to double the balance satisfies:

= 6500(1 + 0.0725
12

)
12𝑡

.

Divide by 6500 and solve for 𝑡:

2 = (1 + 0.0725
12

)
12𝑡

( ) log(1 + 0.0725
12

) = log 2

𝑡 = ≈ 9.59.

Therefore, it will take approximately 9.59 years for the balance to double.

Example 3.4.5.  The magnitude 𝑀  of an earthquake is represented by the equation

𝑀 = 2
3

log( 𝐸
𝐸0

),

where 𝐸 is the amount of energy released by the earthquake in joules, and 𝐸0 = 104.8 
is the assigned minimal measure released by an earthquake. To the nearest hundredth, 
if the magnitude of an earthquake is 7.8, how much energy was released? Answer with 
exact value in scientific notation.

Solution.  Substituting 𝑀 = 7.8 into the equation gives:

7.8 = 2
3

log( 𝐸
104.8 ).

Solve for 𝐸 and simplify the answer:

log( 𝐸
104.8 ) =

𝐸
104.8 = 10

𝐸 = 10 .
Therefore, the amount of energy released by the earthquake is approximately 1016.5 
joules.
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Exercises

🖊️ Exercise 3.4.1.  Solve

1) 31−𝑥 = 5 2) 3𝑥−2 = 42𝑥 3) 5 = 103𝑡−2 4) 𝑒2𝑥 − 2𝑒𝑥 = 15

Answer: 1) 𝑥 = 1 − log3 5 2) 𝑥 = 4 log 2+2
log 3+2 log 4 3) 𝑡 = log 5+2

3 log 10 4) 𝑥 = ln 5
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🖊️ Exercise 3.4.2.  Solve

1) 2 log 𝑥 − 3 = −1

2) ln(2𝑥2) = ln(5𝑥 + 3)

3) 1
2 log2(3𝑥 − 1) = 2

4) ln(𝑥 − 1) − ln(𝑥 + 1) = 1

Answer: 1) 𝑥 = 10 2) 𝑥 = 3 3) 𝑥 = 5 4) no solution
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🖊️ Exercise 3.4.3.  An account with an initial deposit of $8, 200 earns 6.4% annual interest, 

compounded quarterly. After how many years will the balance be tripled? Round your answer to the 

nearest hundredth.

Answer: Approximately 17.3 years.

🖊️ Exercise 3.4.4.  The loudness 𝐿 of a sound in decibels is given by

𝐿 = 10 log( 𝐼
𝐼0

),

where 𝐼 is the sound intensity (in watts per square meter) and 𝐼0 = 10−12 is the reference intensity.

To the nearest hundredth, if a sound has a loudness of 95 decibels, what is its intensity 𝐼? Give the 

exact value in scientific notation.

Answer: 10−2.5 watts per square meter.
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 3.5 Exponential and Logarithmic Models

Exponential Growth and Decay

Recall that the function

𝐴(𝑡) = 𝐴0𝑒𝑘𝑡 or equivalently 𝐴(𝑡) = 𝐴0𝑏𝑡

is commonly used to model exponential growth (when 𝑘 > 0 or 𝑏 > 1) or decay (when 𝑘 <
0 or 0 < 𝑏 < 1), where 𝐴0 is the initial quantity.

Example 3.5.1.  A population of bacteria doubles every hour. A culture started with 10 
bacteria.

1) After 6 hours how many bacteria will there be?

2) After how many hours will the population be tripled? Round your answer to the 
nearest hundredth.

Solution.  The initial population is 10 bacteria, so the population after 𝑡 hours can be 
modeled by:

𝑃(𝑡) = 10𝑏𝑡.
Since the population doubles every hour:

𝑏 = 𝑃(1)
𝑃 (0)

= .

Thus, the population after 𝑡 hours is:
𝑃(𝑡) = 10(2)𝑡.

1) After 6 hours:

𝑃(6) = 10(2)6 = .

2) The time 𝑡 needed to triple the population satisfies:
= 102𝑡.

Solve for 𝑡:
3 = 2𝑡

log 3 =
𝑡 = ≈ 1.58.

Therefore, it will take approximately 1.58 hours for the population to triple.

Example 3.5.2.  The half-life of carbon-14 is 5, 730 years. Laboratory analysis shows that 
a bone fragment currently contains 20% of the carbon-14 that a living organism would 
have had. Estimate the age of the bone to the nearest year.

Solution.  Let 𝐴(𝑡) be the amount of carbon-14 remaining after 𝑡 years. By the exponential 
decay formula:

𝐴(𝑡) = 𝐴0𝑒𝑘𝑡.
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Since the half-life of carbon-14 is 5, 730 years, 𝑘 satisfies
1
2
𝐴0 = 𝐴0𝑒5730𝑘.

Divide by 𝐴0 and solve for 𝑘:

𝑘 =
5730

.

Thus, the model is:

𝐴(𝑡) = 𝐴0𝑒
ln(1

2)
5730 𝑡 = 𝐴0(𝑒ln(1

2))
5730

𝑡 = 𝐴0(
1
2
)

𝑡
5730

.

The age 𝑡 of the bone fragment when 20% of the original carbon-14 remains satisfies:

𝐴0 = 𝐴0(
1
2
)

𝑡
5730

.

Divide by 𝐴0 and solve for 𝑡:

0.2 = (1
2
)

𝑡
5730

(
ln(1

2)
5730

)𝑡 =

𝑡 = ≈ 13305.

Therefore, the bone fragment is approximately 13305 years old.

Remark

In the previous example, we could have also used the formula

𝐴(𝑡) = 𝐴0(
1
2
)

𝑡
ℎ
,

where ℎ is the half-life of the substance.

Example 3.5.3.  Sam goes to the doctor and the doctor gives him 15 milligrams of 
radioactive dye. After 15 minutes, 9 milligrams of dye remain in Sam body. To leave the 
doctor’s office, Sam must pass through a radiation detector that will sound the alarm if 
more than 2 milligrams of the dye are in his body. How long Sam’s visit to the doctor 
take, assuming he was given the dye as soon as he arrived? Round your answer to the 
nearest minute.

Solution.  Let 𝐴(𝑡) be the amount of dye remaining in Sam’s body after 𝑡 minutes. By the 
exponential decay formula:

𝐴(𝑡) = 𝑒𝑘𝑡.
Since 9 milligrams remain after 15 minutes, the decay constant 𝑘 satisfies:

9 = 15𝑒15𝑘.
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Solve for 𝑘:

𝑒15𝑘 = 3
5

= ln(3
5
)

𝑘 = .

Thus, the model is:

𝐴(𝑡) = 15𝑒
ln(3

5)
15 𝑡.

The time that Sam’s visit will take satisfies:

= 15𝑒
ln(3

5)
15 𝑡.

Solve for 𝑡 again:

2
15

= 𝑒
ln(3

5)
15 𝑡

(
ln(3

5)
15

)𝑡 =

𝑡 = ≈ 59.17.

Therefore, Sam’s visit will take approximately 59.17 minutes.

Newton's Law of Cooling

The temperature of an object, 𝑇 , in surrounding air with constant temperature 𝑇𝑠, will 
behave according to the formula

𝑇 (𝑡) = 𝐴𝑒𝑘𝑡 + 𝑇𝑠,
where 𝑡 is time, 𝐴 is the difference between the initial temperature of the object and the 
surroundings, 𝑘 is a constant, the continuous rate of cooling of the object.

Example 3.5.4.  A cheesecake is taken out of the oven with an ideal internal temperature 
of 165°F, and is placed into a 35°F refrigerator. After 10 minutes, the cheesecake has 
cooled to 150°F. If we must wait until the cheesecake has cooled to 70°F before we eat it, 
how long will we have to wait?

Solution. 

Let 𝑇 (𝑡) be the temperature of the cheesecake after 𝑡 minutes. By Newton’s Law of 
Cooling:

𝑇 (𝑡) = 𝐴𝑒𝑘𝑡 + 𝑇𝑠,
where 𝑇𝑠 = 35°F is the surrounding temperature and 𝐴 = 165 − 35 = .

Thus, the temperature after 𝑡 minutes is:

𝑇 (𝑡) = 130𝑒𝑘𝑡 + 35.
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Since the temperature drops to 150°F after 10 minute, the constant 𝑘 satisfies:

150 = 130𝑒10𝑘 + 35.
Solve for 𝑘:

115 = 130𝑒10𝑘

𝑒10𝑘 = 23
26

= ln(23
26

)

𝑘 = .

So the temperature after 𝑡 minutes is:

𝑇 (𝑡) = 130𝑒
ln(23

26)
10 𝑡 + 35.

The time it takes the cheesecake to cool to 70°F satisfies:

70 = 130𝑒
ln(23

26)
10 𝑡 + 35.

Solve for 𝑡:

= 130𝑒
ln(23

26)
10 𝑡

𝑒
ln(23

26)
10 𝑡 = 7

26

( )𝑡 = ln( 7
26

)

𝑡 = ≈ 107.03.

Therefore, we must wait approximately 107.03 minutes for the cheesecake to cool to 70°F.
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Logistic Growth

The logistic growth model behaves approximately exponentially at first, but its growth 
rate decreases as the population approaches an upper limit called the carrying capacity.

The population at time 𝑡 is modeled by

𝑃(𝑡) = 𝑐
1 + 𝑎𝑒−𝑏𝑡 ,

where 𝑎, 𝑏, and 𝑐 are positive constants with the following interpretations:

• 𝑐 is the carrying capacity—the value that 𝑃(𝑡) approaches as 𝑡 → ∞;

• 𝑏 is the growth rate;

• 𝑎 is determined by the initial population, specifically

𝑎 = 𝑐 − 𝑃(0)
𝑃(0)

.

Example 3.5.5.  The equation

𝑁(𝑡) = 500
1 + 49𝑒−0.7𝑡

models the number of people in a small town who have heard a rumor after 𝑡 days.

1) What’s the population of the small town?

2) How many people started the rumor?

3) To the nearest whole number, how many people will have heard the rumor after 3 
days?

4) How many days will it take for 100 people to hear the rumor?

Solution. 

1) When 𝑡 → 00, 𝑒−0.7𝑡 → 0 and

𝑁(𝑡) → 500
1 +

= .

Therefore, the population of the small town is 500 people.

2) The number of people who started the rumor is given by:

𝑁(0) = 500
1 + 49𝑒0 = 500 = .

3) After 3 days:

𝑁(3) = 500
1 + 49𝑒−0.7( ) = 500

1 + 49𝑒−2.1 ≈ .

Therefore, approximately 71 people will have heard the rumor after 3 days.

4) The time 𝑡 it takes for 100 people to hear the rumor satisfies:
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100 = 500
1 + 49𝑒−0.7𝑡 .

Solve for 𝑡:
1
5

= 1
1 + 49𝑒−0.7𝑡

1 + 49𝑒−0.7𝑡 =

𝑒−0.7𝑡 =

= ln( 4
49

)

𝑡 =
ln(49

4 )
0.7

≈ .

Therefore, it will take approximately 4 days for 100 people to hear the rumor.
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Exercises

🖊️ Exercise 3.5.1.  A bacteria culture initially contains 3000 bacteria and doubles every half hour. 

Find the size of the bacteria population after 80 minutes.

Answer: Approximately 19049 bacteria.

🖊️ Exercise 3.5.2.  The half-life of tritium-3 is 12.25 years. How long would it take the sample to 

decay to 20% of its original amount? Round your answer to the nearest hundredth.

Answer: Approximately 28.44 years.
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🖊️ Exercise 3.5.3.  A doctor prescribes 125 milligrams of a therapeutic drug that decays by about 

30% each hour.

1) To the nearest hour, what is the half-life of the drug?

2) To the nearest hundredth hours, how long would it take the drug to decay to 30% of its original 

amount.

Answer: 1) Approximately 2 hours. 2) Approximately 3.38 hours.

🖊️ Exercise 3.5.4.  A cup of coffee at 185°F is placed into a 60°F room. One hour later, the 

temperature of coffee has dropped to 120°F. How long will it take for the temperature to drop to 

80°F? Round your answer to the nearest minute.

Answer: Approximately 150 minutes.
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Chapter 3 Exponential and Logarithmic Functions Exercises

🖊️ Exercise 3.5.5.  The population of a fish farm in 𝑡 years is modeled by the equation

𝑃(𝑡) = 1000
1 + 9𝑒−0.6𝑡 .

1) What is the initial population of fish?

2) What is the carrying capacity for the fish population?

3) To the nearest tenth, what is the doubling time for the fish population?

Answer: 1) The initial population is 100 fish. 2) The carrying capacity is 1000 fish. 3) Approximately 1.4 years.
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Chapter 4 Trigonometric Functions

 4.1 Review on Angles

Definition 4.1.1 (Angles and Measurements)

An angle is the union of two rays that share a common endpoint. This endpoint is the 
vertex, and the rays are the sides of the angle.

An angle can be formed by rotating a ray around its endpoint. The starting ray is the 
initial side, and the ending ray is the terminal side.

The measure of an angle is the amount of rotation from the initial side to the terminal 
side. A counterclockwise rotation produces a positive angle, while a clockwise rotation 
produces a negative angle.

One degree represents 1
360  of a full counterclockwise rotation.

One radian is the measure of a central angle whose intercepted arc length equals the 
radius of the circle.

Conversion Factor: A half revolution, 180°, is equivalent to 𝜋 radians:

180° = 𝜋 radians, or 1 = 180°
𝜋 radians

where 𝜋 ≈ 3.14159.

An angle is in standard position when its vertex is at the origin and its initial side lies 
along the positive 𝑥-axis.

A Positive Angle of 40° in Standard Position

𝑥

𝑦

𝛼 = 40°te
rm

inal s
ide

initial side

A Negative Angle of −120° in Standard Position

𝑥

𝑦

𝛼 = −120°

te
rm

in
al

 s
id

e

initial side

A central angle is an angle whose vertex is at the center of a circle.

An arc is any portion of a circle.

A sector is a region enclosed by two radii 
and the arc between them.

The length of an entire circle is its circum
ference. The length of an arc is called its 
arc length. The area of a sector is called its 
sector area.

A Central Angle of 5𝜋
6 radians = 150°

𝛼 = 5𝜋
6 radians

arc length

terminal side

initial sidevertex

♣︎
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Chapter 4 Trigonometric Functions 4.1 Review on Angles

Example 4.1.1.  Convert each radian measure to degrees and each degree measure to 
radians.

1) 𝜋
3 2) 2 3) 36° 4) 150°

Solution. 

1)
𝜋
3

= 𝜋
3

· 180°
𝜋

=

2) 2 = 2 · 180°

=

3) 36° = 36° · 𝜋

=

4)
150° = 150° ·

=

Definition 4.1.2 (Coterminal and Reference Angles)

Coterminal angles are angles in standard position that share the same terminal side.

The reference angle of an angle in the standard position is the acute angle (between 0 
and 𝜋2 , or 0° and 90°) formed by the terminal side of the angle and the positive or negative 
side of the 𝑥-axis.

The following figure illustrates coterminal angles and reference angles, where 𝛼 and 𝛽 
are coterminal angles, and 𝛼ref and 𝛽ref are their reference angles.

𝑥

𝑦

𝛼 = 135° = 3𝜋
4

𝛽 = −225° = −5𝜋
4

𝛼ref = 𝛽ref = 45° = 𝜋
4

♣︎

Example 4.1.2.  Find a coterminal angle 𝛼 such that 0° < 𝛼 < 360° and the reference angle 
𝛽 for the angle 𝜃 = −45°.

Solution.  To find the coterminal angle and the reference angle, it is better to draw a 
figure first.

𝑥

𝑦

𝜃 = −45°

𝛼

𝛽

From the figure, the coterminal angle is

𝛼 = 360° + 𝜃 = 360° − 45° = .
The reference angle is

𝛽 = −𝛼 = .
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Chapter 4 Trigonometric Functions 4.1 Review on Angles

Example 4.1.3.  Find a coterminal angle 𝛼 such that 0 ≤ 𝛼 < 2𝜋 and the reference angle 
𝛽 for the angle 𝜃 = 11𝜋

4 .

Solution.  To find the coterminal angle and the reference angle, it is better to draw a 
figure first.

𝑥

𝑦 Because 495 = 11𝜋
4 > 2𝜋, we need to subtract 

2𝜋 to find the coterminal angle 𝛼: From the 
figure, the coterminal angle is

𝛼 = 495 − 2𝜋 = 11𝜋
4

− 2𝜋 = .

From the figure, the reference angle is
𝛽 = 𝜋 − 𝛼 = 𝜋 − = .

Formulas for Arc Length and Sector Area

Let 𝜃 be the radian measure of a central angle in a circle of radius 𝑟.

• The arc length 𝑠 of the angle is
𝑠 = 𝑟𝜃.

• The sector area 𝐴 enclosed by the angle and the arc is

𝐴 = 1
2
𝑟2𝜃.

Example 4.1.4.  Find the arc length of a central angle of 215 degrees in a circle of radius 10.

Solution.  To find the arc length, we first convert the angle measure from degrees to 
radians:

𝜃 = 215° · 𝜋
180°

= .

Then, we use the arc length formula to find the arc length:

𝑠 = 𝑟𝜃 = 10 · = .

Example 4.1.5.  Find the sector area of a central angle of 150 degree in a circle of radius 12.

Solution.  To find the sector area, we first convert the angle measure from degrees to 
radians:

𝜃 = 150° · 𝜋
180°

= .

Then, we use the sector area formula to find the sector area:

𝐴 = 1
2
𝑟2𝜃 = 1

2
· 122 · = .
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Exercises

Find a coterminal angle 𝛼 in degrees such that 0° ≤ 𝛼 < 360° and the reference angle 𝛽 in 
radians for the given angle.

1) 𝜃 = −120° 2) 𝜃 = 400° 3) 𝜃 = 8𝜋
3 4) 𝜃 = −5𝜋

4

Answer: 1) 𝛼 = 4𝜋
3 , 𝛽 = 𝜋

3 2) 𝛼 = 2𝜋
9 , 𝛽 = 2𝜋

9 3) 𝛼 = 2𝜋
3 , 𝛽 = 𝜋

3 4) 𝛼 = 3𝜋
4 , 𝛽 = 𝜋

4

🖊️ Exercise 4.1.1.  A central angle in a circle of radius 3 is measure 120°. Find the arc length on 

the circle and the sector area in the circle that are determined by the angle.

Answer: Arc length: 2𝜋. Sector area: 3𝜋.
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 4.2 Trigonometric Functions of Arbitrary Angles

Definition 4.2.1 (Trigonometric Functions of Arbitrary Angles)

Let 𝜃 be a angle in the standard position and 𝑃(𝑥, 𝑦) is a point on the terminal side. 
Denote by 𝑟 the distance between 𝑃  and the origin 𝑂. Then 𝑟 = √𝑥2 + 𝑦2.

The trigonometric functions of the angle 𝜃 are defined as follows.

Sine sin 𝜃 = 𝑦
𝑟

Cosine cos 𝜃 = 𝑥
𝑟

Tangent tan 𝜃 = sin 𝜃
cos 𝜃

= 𝑦
𝑥

Cosecant csc 𝜃 = 1
sin 𝜃

= 𝑟
𝑦

Secant sec 𝜃 = 1
cos 𝜃

= 𝑟
𝑥

Cotangent cot 𝜃 = 1
tan 𝜃

= 𝑥
𝑦

𝑥

𝑦

𝛼

𝛼

𝑟

𝑦
=

𝑟s
in

𝛼

𝑥 = 𝑟 cos 𝛼

𝑟 tan𝛼

𝑟 cot 𝛼

𝑟 sec 𝛼

𝑟c
sc

𝛼 𝑃
(𝑥

,𝑦
)

𝑂(0, 0)

♣︎

Note on Undefined Trigonometric Functions

In the above definitions, some trigonometric functions may be undefined for certain 
angles. For example, if the terminal side of angle 𝜃 lies along the 𝑦-axis, then 𝑥 = 0 and 
both tan 𝜃 and sec 𝜃 are undefined. Similarly, if the terminal side of angle 𝜃 lies along the 
𝑥-axis, then 𝑦 = 0 and both cot 𝜃 and csc 𝜃 are undefined.

Polar Coordinate System

The definitions of the trigonometric functions above induce a coordinate system called 
the polar coordinate system. In this system, a point 𝑃  in the plane is represented by 
an ordered pair (𝑟, 𝜃), where 𝑟 is the distance from the origin to the point 𝑃 , and 𝜃 is the 
angle formed by the positive 𝑥-axis and the line segment from the origin to the point 
𝑃 . The value of 𝑟 can be positive, or zero. For a point 𝑃  with polar coordinates (𝑟, 𝜃), its 
rectangular coordinates (𝑥, 𝑦) can be found using the formulas

𝑥 = 𝑟 cos 𝜃
𝑦 = 𝑟 sin 𝜃.

In particular, if 𝑃  is a point on the unit circle, that is the circle centered at the origin with 
the radius 𝑟 = 1, then sin 𝜃 = 𝑦 and cos 𝜃 = 𝑥.
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Chapter 4 Trigonometric Functions 4.2 Trigonometric Functions of Arbitrary Angles

Example 4.2.1.  Find the EXACT VALUES of all six trigonometric functions of the central 
angle 𝜃 whose terminal side passes through the point (−1

2 , −
√

3
2 ) on the unit circle.

Solution.  Since the point is on the unit circle, we have 𝑟 = 1. Using the definitions of the 
trigonometric functions, we have

sin 𝜃 = −
√

3
2

cos 𝜃 = −1
2

tan 𝜃 = sin 𝜃
cos 𝜃

=
−

√
3

2
−1

2
=

csc 𝜃 = 1
sin 𝜃

= sec 𝜃 = 1
cos 𝜃

= cot 𝜃 = 1
tan 𝜃

=

Example 4.2.2.  Find the EXACT VALUES of all six trigonometric functions of the angle 𝜃 
in the standard position whose terminal side passes through the point (−3, −4).

Solution.  By Pythagorean identity, the distance from the point to the origin is

𝑟 = √ 2 + 2 =
√

25 = .
Using the definitions of the trigonometric functions, we have

sin 𝜃 = cos 𝜃 = tan 𝜃 =

csc 𝜃 = sec 𝜃 = cot 𝜃 =

Example 4.2.3.  The terminal side of an angle 𝜃 in the standard position is in the third 
quadrant and the 𝑦-coordinate of the intersection of the terminal side with the unit circle 
is −

√
2

2 . Find the 𝑥-coordinate of the point of intersection and then find the EXACT VALUES 
of all six trigonometric functions of the angle 𝜃.

Solution.  Since the point is on the unit circle, we have 𝑟 = 1. Using the Pythagorean 
Theorem, we have

𝑥2 + (−
√

2
2

)
2

= 12,

which gives

𝑥2 = 1 − = .

Thus,

𝑥 = ±√1
2

= ±
2

.

Since the terminal side of the angle is in the third quadrant, where both 𝑥- and 𝑦-coordi
nates are negative, we have

𝑥 = .

Therefore, the point of intersection is (−1
2 , −

√
2

2 ). Using the definitions of the trigono

metric functions, we have
sin 𝜃 = cos 𝜃 = tan 𝜃 =

csc 𝜃 = sec 𝜃 = cot 𝜃 =
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Chapter 4 Trigonometric Functions 4.2 Trigonometric Functions of Arbitrary Angles

Example 4.2.4.  Simplify the expression using the definition of trigonometric functions.

1) sec 𝜃
tan 𝜃 . 2) tan 𝑡 csc 𝑡

Solution.  Let 𝑃(𝑥, 𝑦) be a point on the terminal side of angle 𝜃 or 𝑡 and 𝑟 is the distance 
from 𝑃  to the origin. By definition, we have

1) sec 𝜃
tan 𝜃

= = 𝑟
𝑦

= .
2) tan 𝑡 csc 𝑡 = · = 𝑟

𝑥
= .

Pythagorean Identities of Trigonometric Functions

For any angle 𝜃, the following identities hold:

sin2 𝜃 + cos2 𝜃 = 1
1 + tan2 𝜃 = sec2 𝜃
1 + cot2 𝜃 = csc2 𝜃

Example 4.2.5.  Given that sec 𝑡 = −17
8  and 0 < 𝑡 < 𝜋, find the EXACT VALUES of the other 

five trigonometric functions.

Solution. (Using Pythagorean Identities).  Since sec 𝑡 = −17
8 , we have cos 𝑡 = − 8

17 . Using the 
Pythagorean identity sin2 𝑡 + cos2 𝑡 = 1, we have

sin2 𝑡 + (− 8
17

)
2

= 1,

which gives

sin2 𝑡 = 1 − = .

Thus,

sin 𝑡 = ±√225
289

= ±
17

.

Since 0 < 𝑡 < 𝜋, where the sine function is positive, we have
sin 𝑡 = .

Therefore, we have

tan 𝑡 = sin 𝑡
cos 𝑡

= = ,

csc 𝑡 = 1
sin 𝑡

= ,

cot 𝑡 = 1
tan 𝑡

= .

Solution. (Using the Definition).  Since sec 𝑡 = −17
8 , we have 𝑟

𝑥 = −17
8 . Consider the point 

(−8, 𝑦) such that 𝑟 = 17. Since 0 < 𝑡 < 𝜋, we have 𝑦 > 0. Using the Pythagorean Theorem, 
we have
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Chapter 4 Trigonometric Functions 4.2 Trigonometric Functions of Arbitrary Angles

𝑦 =
√

𝑟2 − 𝑥2 = √( )2 − ( )2 = .

𝑥

𝑦

𝑡

(−8, 15)

17

Therefore, we have

sin 𝑡 = 𝑦
𝑟

= ,

cos 𝑡 = 𝑥
𝑟

= ,

tan 𝑡 = sin 𝑡
cos 𝑡

= = ,

csc 𝑡 = 1
sin 𝑡

= ,

cot 𝑡 = 1
tan 𝑡

= .

Evaluate Trigonometric Functions using Reference Angles

To evaluate the trigonometric functions of an angle 𝜃 in standard position, we can use the 
reference angle 𝜃ref and the signs of the trigonometric functions in the quadrant where 
the terminal side of the angle 𝜃 lies.

For example, if the terminal side of angle 𝜃 is in the second quadrant, then
sin 𝜃 = sin 𝜃ref = sin(𝜋 − 𝜃), cos 𝜃 = − cos 𝜃ref = − cos(𝜋 − 𝜃)

Example 4.2.6.  Use the reference angle to find the EXACT VALUES of all six trigonometric 
functions of 5𝜋

6

Solution.  Let 𝜃 be the angle measured 5𝜋
6 . Then the terminal side of the angle 𝜃 is in the 

second quadrant, the reference angle is

𝜃ref = − 𝜃 = 𝜋 − 5𝜋
6

= .

𝑥

𝑦

𝜃 = 5𝜋
6

𝜃ref = 𝜋
6

Therefore,
sin 𝜃 = sin 𝜃ref = ,

cos 𝜃 = − cos 𝜃ref = ,

tan 𝜃 = sin 𝜃
cos 𝜃

= = ,

csc 𝜃 = 1
sin 𝜃

= 1 = ,

sec 𝜃 = 1
cos 𝜃

= 1 = ,

cot 𝜃 = 1
tan 𝜃

= 1 = .
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Left-Hand Trick for Trigonometric Functions of Special Angles

To remember the sine and cosine values of the special angles 0, 𝜋
6 = 30°, 𝜋

4 = 45°, 𝜋
3 = 60°, 

and 𝜋
2 = 90°, use your hand as follows:

• Hold your left hand in front of you with 
your palm facing you and fingers spread 
apart.

• Label your thumb as 𝜋
2 , index finger as 𝜋

3 , 
middle finger as 𝜋

4 , ring finger as 𝜋
6 , and 

pinky as 0. The angles increase counter
clockwise from the pinky to the thumb.

• For a given angle 𝜃, bend the finger corre
sponding to that angle.

• To find sine of an angle 𝜃, count the fingers to the right of (or below) the bent finger:

sin 𝜃 =
√fingers on the right (or below)

2
.

• To find cosine of an angle 𝜃, count the fingers to the left of (or above) the bent finger:

cos 𝜃 =
√fingers on the left (or above)

2
.

Example 4.2.7.  Use the hand trick to find the EXACT VALUES of sin 𝜋
3  and cos 𝜋

3 .

Solution.  Bend the index finger to represent the angle 𝜋
3 .

There are  fingers to the right of the bent finger. Thus,

sin 𝜋
3

=
√

2
.

There are  fingers to the left of the bent finger. Thus,

cos 𝜋
3

=
√

2
.

Symmetries of Trigonometric Functions

The trigonometric functions have the following symmetries.

• Cosine and secant are even functions:
cos(−𝜃) = cos 𝜃 sec(−𝜃) = sec 𝜃.

• Sine, tangent, cosecant, and cotangent are odd functions:
sin(−𝜃) = − sin 𝜃 tan(−𝜃) = − tan 𝜃 csc(−𝜃) = − csc 𝜃 cot(−𝜃) = − cot 𝜃
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Example 4.2.8.  Find all six trigonometric functions of the angle −120° using the symme
tries of trigonometric functions.

Solution.  By symmetry and the reference angle method, we have

sin(−120°) = − sin 120° = −(sin 60°) = ,

cos(−120°) = cos 120° = − cos 60° = ,

tan(−120°) = ,

csc(−120°) = ,

sec(−120°) = ,

cot(−120°) = .

Definition 4.2.2 (Periodic Function)

A function 𝑓  is called a periodic function if there is number 𝑝 such that 𝑓(𝑥 + 𝑝) = 𝑓(𝑥) 
for all 𝑥. The smalled positive number 𝑝 such that 𝑓(𝑥 + 𝑝) = 𝑓(𝑥) for all 𝑥 is called the 
period of the function 𝑓 .

♣︎

Periods of Trigonometric Functions

The period of the cosine, sine, secant, and cosecant functions is 2𝜋.

The period of the tangent and cotangent functions is 𝜋.

Example 4.2.9.  Find the EXACT Values of the six trigonometric functions of the angle 𝜃 =
7𝜋
3  using the periodicity of trigonometric functions.

Solution.  Since 7𝜋
3 = 2𝜋 + 𝜋

3 , by periodicity, we have

sin 7𝜋
3

= sin(2𝜋 + 𝜋
3
) = sin 𝜋

3
= ,

cos 7𝜋
3

= cos(2𝜋 + 𝜋
3
) = cos 𝜋

3
= ,

tan 7𝜋
3

= tan(2𝜋 + 𝜋
3
) = tan 𝜋

3
= ,

csc 7𝜋
3

= csc(2𝜋 + 𝜋
3
) = csc 𝜋

3
= ,

sec 7𝜋
3

= sec(2𝜋 + 𝜋
3
) = sec 𝜋

3
= ,

cot 7𝜋
3

= cot(2𝜋 + 𝜋
3
) = cot 𝜋

3
= .
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Exercises

🖊️ Exercise 4.2.1.  Find the coordinates of the point on the unit circle and the terminal side of the 

given angle. Show your answer in exact form.

1) 𝜃 = 225° 2) 𝜃 = 3𝜋
4 3) 𝜃 = 11𝜋

6

Answer: 1) (−
√

2
2 , −

√
2

2 ) 2) (−
√

2
2 ,

√
2

2 ) 3) (
√

3
2 , −1

2)

🖊️ Exercise 4.2.2.  Find all six trigonometric functions of the angle in the standard position whose 

terminal side passing through the given point. Show your answer in exact form.

1) (
√

3
2 , −1

2) 2) (−1, 2)

Answer:
1) sin 𝜃 = −1

2 , cos 𝜃 =
√

3
2 , tan 𝜃 = −

√
3

3 , csc 𝜃 = −2, sec 𝜃 = 2√
3 = 2

√
3

3 , cot 𝜃 = −
√

3

2) sin 𝜃 = 2√
5 = 2

√
5

5 , cos 𝜃 = − 1√
5 = −

√
5

5 , tan 𝜃 = −2, csc 𝜃 =
√

5
2 , sec 𝜃 = −

√
5, cot 𝜃 = −1

2
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🖊️ Exercise 4.2.3.  Given that tan 𝜃 = −2 and −𝜋
2 < 𝜃 < 𝜋

0 , find the EXACT VALUES of the other 

five trigonometric functions. Show your answer in exact form.

Answer: sin 𝜃 = − 2√
5 = −2

√
5

5 , cos 𝜃 = 1√
5 =

√
5

5 , csc 𝜃 = −
√

5
2 , sec 𝜃 =

√
5, cot 𝜃 = −1

2

🖊️ Exercise 4.2.4.  Simplify the expression.

1) cot 𝜃
csc 𝜃 2) sec 𝜃 tan 𝜃 cos2 𝜃

Answer: 1) cos 𝜃 2) sin 𝜃
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🖊️ Exercise 4.2.5.  Find all six trigonometric functions of each angle. Show your answer in exact form.

1) 𝐴 = 4𝜋
3 2) 𝐵 = −5𝜋

6 3) 𝐶 = 750°

Answer:

1) sin 𝐴 = −
√

3
2 , cos 𝐴 = −1

2 , tan 𝐴 =
√

3, csc 𝐴 = − 2√
3 = 2

√
3

3 , sec 𝐴 = −2, cot 𝐴 = 1√
3 =

√
3

3

2) sin 𝐵 = −1
2 , cos 𝐵 = −

√
3

2 , tan 𝐵 =
√

3
3 , csc 𝐵 = −2, sec 𝐵 = − 2√

3 = −2
√

3
3 , cot 𝐵 =

√
3

3) sin 𝐶 = 1
2 , cos 𝐶 =

√
3

2 , tan 𝐶 =
√

3
3 , csc 𝐶 = 2, sec 𝐶 = 2√

3 = 2
√

3
3 , cot 𝐶 =

√
3
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Chapter 4 Trigonometric Functions 4.3 Right Triangle Trigonometry

 4.3 Right Triangle Trigonometry

Trigonometric Functions Associated to a Right Triangle

Given a right triangle with an acute angle 𝜃, the six trigonometric functions and lengths 
of the sides are related as follows:

Adj

OppHyp

𝜃

sin 𝜃 = Opp
Hyp cos 𝜃 = Adj

Hyp
tan 𝜃 = Opp

Adj

csc 𝜃 = Hyp
Opp

sec 𝜃 = Hyp
Adj cot 𝜃 = Adj

Opp

Example 4.3.1.  In triangle △ 𝐴𝐵𝐶, if ∠𝐶 = 90°, 𝐴𝐵 = 19 cm and ∠𝐵 = 23°, determine the 
length of 𝐴𝐶 and the length of 𝐵𝐶 to the nearest tenth of a centimeter.

Solution. 

𝐵 𝐶

𝐴

19 cm

23°

The length 𝐴𝐶 and the trigonometric functions of ∠𝐵 are 
related as follows:,

sin ∠𝐵 = 𝐴𝐶
𝐴𝐵

,

which gives
𝐴𝐶 = (𝐴𝐵) · sin ∠𝐵 = 19 · sin 23° = cm .

Also,

cos ∠𝐵 = 𝐵𝐶
𝐴𝐵

,

which gives
𝐵𝐶 = (𝐴𝐵) · cos ∠𝐵 = 19 · cos 23° = cm .

Example 4.3.2.  Find sides 𝑏 and 𝑐 in the following right triangle.

𝑎 = 5

𝑏
𝑐

24°

Solution.  Let 𝜃 be the angle opposite to side 𝑏. Then, we have 𝜃 = 24°. The sides 𝑎, 𝑏 and 
𝑐 in the right triangle are related to the trigonometric functions of angle 𝜃 as follows:

tan 𝜃 = 𝑏
𝑎
, and sec 𝜃 = 𝑐

𝑎
.

Thus, we have
𝑏 = 𝑎 · tan 𝜃 = 5 · tan 24° = ,
𝑐 = 𝑎 · sec 𝜃 = 5 · sec 24° = .
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Chapter 4 Trigonometric Functions 4.3 Right Triangle Trigonometry

Angle of elevation or depression

The angle of elevation is the angle formed by the horizontal 
line and the line of sight to an object above the horizontal line.

The angle of depression is the angle formed by the horizontal 
line and the line of sight to an object below the horizontal line.

angle of elevation

angle of depression

Example 4.3.3.  The angle of elevation to the top of a tall tree is 55° when measured at a 
point 30 feet from the base. Assume the ground is flat. How tall is the tree?

Solution. 

30 ft

ℎ

55°

Let ℎ be the height of the tree. Then, we have

tan 55° =
30

,

which gives
ℎ = 30 · tan 55° = feet.

Example 4.3.4.  A lighthouse stands 200 feet above sea level. From the top of the light
house, a boat is observed at an angle of depression of 15°. Assuming the sea surface is 
flat and horizontal and the lighthouse is perpendicular to the sea surface, how far is the 
boat from the top of the lighthouse?

Solution. 

𝐹𝐿

𝐵𝑂
15° Sea Level20

0
ft 15°

Let 𝐿 be the top of the lighthouse, 𝐵 be the position 
of the boat, and 𝑂 be the intersection of the perpen
dicular lines through 𝐿 and 𝐵, as shown in the figure 
on the left. Then

𝐿𝑂 = 200  feet, and ∠𝐵𝐿𝐹 = 15°.
Because ∠𝑂𝐵𝐿 and ∠𝐵𝐿𝐹  are alternate interior an
gles, we have ∠𝑂𝐵𝐿 = 15°. Therefore, the distance 
𝐿𝐵 from the top of the lighthouse to the boat and the 
trigonometric functions of angle ∠𝑂𝐿𝐵 are related as 
follows:

sin 15° =
𝐿𝐵

.

Solving for 𝐿𝐵, we get the distance from the top to 
the lighthouse to the boat is

𝐿𝐵 = 200 = feet.
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Chapter 4 Trigonometric Functions 4.3 Right Triangle Trigonometry

Example 4.3.5.  To estimate the height of a building, two measurements are taken. The 
first measurement shows an angle of elevation to the top of the building as 51°. The 
second measurement, taken 50 feet closer to the base of the building, yields an angle of 
elevation of 77°. From the measurements, estimate the height of the building. Round to 
the nearest foot.

Solution. 

𝑇

𝐵𝐹 𝑆50 ft

51° 77°

Let 𝑇  be the top of the building, 𝐵 be the base of 
the building, and 𝐹  and 𝑆 be the first and the second 
observation points, as shown in the figure on the left. 
From the definition the tangent function, we have the 
following equations:

tan 51° = 𝑇𝐵
𝐹𝐵

, tan 77° = 𝑇𝐵
𝑆𝐵

, and 𝐹𝐵 − 𝑆𝐵 = 50 feet.

Solving for 𝐹𝐵 and 𝑆𝐵 in terms of 𝑇𝐵 and plugging 
them in to the third equation induces an equation in one 
variable 𝑇𝐵 as follows:

𝑇𝐵 − 𝑇𝐵 = 50 feet.

Solving for 𝑇𝐵, we get the height of the building is

𝑇𝐵 = 50
1

tan 51° − 1
tan 77°

= feet.

Cofunction Identities

Given an angle 𝜃 measured in radians, we have the following cofunction identities.

sin(𝜋
2

− 𝜃) = cos 𝜃 csc(𝜋
2

− 𝜃) = sec 𝜃

cos(𝜋
2

− 𝜃) = sin 𝜃 sec(𝜋
2

− 𝜃) = csc 𝜃

tan(𝜋
2

− 𝜃) = cot 𝜃 cot(𝜋
2

− 𝜃) = tan 𝜃

Reasoning: If 𝜃 is an acute angle in a 
right triangle, then 𝜋

2 − 𝜃 is the other acute 
angle in the triangle. Therefore, these iden
tities can be interpreted using right triangle 
trigonometry.

In general, this identities can be obtained 
using the reference angle method.

Example 4.3.6.  If sin 𝑡 = 5
13  and 0 < 𝑡 < 𝜋

2 , find tan(𝜋
2 − 𝑡).

Solution. By the cofunction identity, we have

tan(𝜋
2

− 𝑡) = cot 𝑡 = cos 𝑡
sin 𝑡

.

Because 0 < 𝑡 < 𝜋
2 , by the Pythagorean iden

tity,

cos 𝑡 =
√

1 − sin2 𝑡 = √1 − ( 5
13

)
2

= .

Thus, we have

tan(𝜋
2

− 𝑡) = cos 𝑡
sin 𝑡

= = 5 .
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Exercises

🖊️ Exercise 4.3.1.  Find all trigonometric functions of the angle 𝜃 in the right triangle given below.

𝐶

𝐵𝐴 9

2
√

1011

𝜃

Answer: sin 𝜃 = 2
√

10
11 , cos 𝜃 = 9

11 , tan 𝜃 = 2
√

10
9 , csc 𝜃 = 11

2
√

10 = 11
√

10
20 , sec 𝜃 = 11

9 , cot 𝜃 = 9
2
√

10 = 9
√

10
20 .

🖊️ Exercise 4.3.2.  Find sin 𝜃, cos 𝜃 and tan 𝜃 of the angle 𝜃 given in the figure.

1) 𝐶

𝐵𝐴

1018

𝜃

2) 𝐶

𝐵𝐴 5

7

𝜃

3) 𝐶

𝐵𝐴 8

5

𝜃

Answer:

1) sin 𝜃 = 5
9 , cos 𝜃 = 2

√
14

9 , tan 𝜃 = 5
2
√

14 ,

2) sin 𝜃 = 2
√

6
7 , cos 𝜃 = 5

7 , tan 𝜃 = 2
√

6
5 ,

3) sin 𝜃 = 5
√

89
89 , cos 𝜃 = 8

√
89

89 , tan 𝜃 = 5
8 .
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🖊️ Exercise 4.3.3.  Find sides 𝑎 and 𝑏 in the following right triangle (round to the nearest thousandth).

𝐶

𝐵𝐴 𝑏

𝑎
𝑐 = 11

37°

Answer: 𝑎 = 6.62, 𝑏 = 8.785.

🖊️ Exercise 4.3.4.  Find sides 𝑎 and 𝑐 in the following right triangle (round to the nearest thousandth).

𝐶

𝐵𝐴 𝑏 = 11

𝑎
𝑐

41°

Answer: 𝑎 = 9.562, 𝑐 = 14.575.
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🖊️ Exercise 4.3.5.  In triangle △ 𝐴𝐵𝐶 , if ∠𝐶 = 90°, 𝐴𝐶 = 52 cm and ∠𝐵 = 37°, determine the 

length of 𝐴𝐵 and the length of 𝐵𝐶 to the nearest tenth of a centimeter.

Answer: 𝐴𝐵 = 86.4 cm, 𝐵𝐶 = 69 cm.

🖊️ Exercise 4.3.6.  A hot air balloon hovers above the ground at a height of 1000 feet. A person 

on the ground sees the balloon at an angle of elevation of 27°. What is the distance between the 

balloon and the person? (Round to the nearest foot.)

Answer: 2203 feet.
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🖊️ Exercise 4.3.7.  A jet takes off at a 20° angle. The runway from takeoff is 800 meters long. What 

is the altitude of the airplane when it flies over the end of the runway? (Round to the nearest tenth 

of a meter)

Answer: 291.2 meters.

🖊️ Exercise 4.3.8.  If cos 𝛼 = 12
13 , find the possible values of cos(𝜋

2 − 𝛼).

Answer: cos(𝜋
2 − 𝛼) = ± 5

13
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Chapter 4 Trigonometric Functions 4.4 Graphs of Sine and Cosine

 4.4 Graphs of Sine and Cosine

Properties of Standard Sine and Cosine Functions: 𝑦 = sin 𝑥 and 𝑦 = cos 𝑥
The functions 𝑦 = sin 𝑥 and 𝑦 = cos 𝑥 are called the standard sine function and the 
standard cosine function, respectively.

−2𝜋 −3𝜋
2 −𝜋 −𝜋

2
𝜋
2 𝜋 3𝜋

2 2𝜋 𝑥

−2

−1

0

1

2
𝑦

𝑦 = cos 𝑥

𝑦 = sin 𝑥

Common Properties of 𝑦 = sin 𝑥 and 𝑦 = cos 𝑥

Both functions are periodic with the period of 2𝜋, domain (−∞, ∞), and range [−1, 1].

In the following, 𝑘 is any integer.

Properties of 𝑦 = sin 𝑥

• 𝑦-intercept: (0, 0)

• 𝑥-intercepts: (𝑘𝜋, 0).

• Global (and local) maximum:

1 = sin(2𝑘𝜋 + 𝜋
2
).

• Global (and local) minimum:

−1 = sin(2𝑘𝜋 − 𝜋
2
).

• Symmetric with respect to the vertical 
line 𝑥 = 𝑘𝜋 + 𝜋

2 :

sin(𝑘𝜋 + 𝜋
2

+ 𝑥) = sin(𝑘𝜋 + 𝜋
2

− 𝑥).

• Symmetric with respect to the intersec
tion points (𝑘𝜋, 0) with the midline:

sin(𝑘𝜋 + 𝑥) = − sin(𝑘𝜋 − 𝑥).
In particular, 𝑦 = sin 𝑥 is an odd function.

Properties of 𝑦 = cos 𝑥

• 𝑦-intercept: (0, 1)

• 𝑥-intercepts: (𝑘𝜋 + 𝜋
2
, 0).

• Global (and local) maximum:
1 = cos(2𝑘𝜋).

• Global (and local) minimum:
−1 = cos(2𝑘𝜋 + 𝜋).

• Symmetric with respect to the vertical 
line 𝑥 = 𝑘𝜋:

cos(𝑘𝜋 + 𝑥) = cos(𝑘𝜋 − 𝑥).
In particular, 𝑦 = cos 𝑥 is an even func
tion.

• Symmetric with respect to the intersec
tion points (𝑘𝜋 + 𝜋

2 , 0) with the midline:

cos(𝑘𝜋 + 𝜋
2

+ 𝑥) = − cos(𝑘𝜋 + 𝜋
2

− 𝑥).

Relationship between Sine and Cosine Functions

By the symmetry of the cosine function and the cofunction identity, we have

cos 𝑥 = cos(−𝑥) = sin(𝜋
2

− (−𝑥)) = sin(𝑥 + 𝜋
2
).

Graphically, 𝑦 = cos 𝑥 is a horizontal shift of 
𝜋
2

 units to the left of 𝑦 = sin 𝑥.
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Definition 4.4.1 (Sinusoidal Functions and Their Characteristics)

A sinusoidal function is a function 𝑓  defined by 𝑓(𝑥) = 𝐴 sin(𝐵𝑥 − 𝐶) + 𝐷 or 𝑓(𝑥) =
𝐴 cos(𝐵𝑥 − 𝐶) + 𝐷. They have the following characteristics:

• The midline is the horizontal axis of oscillation: 𝑦 = 𝐷, where 𝐷 is the average of the 
maximum and minimum values of 𝑓 .

• The amplitude is the maximum vertical displacement from the midline, given by |𝐴|, 
which also equals |𝑓max−𝑓min|

2 , where 𝑓max and 𝑓min are the maximum and minimum of 𝑓 .

• The period 𝑇  is the smallest positive horizontal distance for one complete cycle, 
starting at the midline, passing through a maximum, then a minimum, and returning 
to the midline, such that 𝑓(𝑥 + 𝑇) = 𝑓(𝑥). It is calculated as 𝑇 = 2𝜋

|𝐵| .

The period is also the distance between two consecutive maximums or two consecutive 
minimums or twice the distance of two consecutive midline crossings.

• The phase shift4 𝜏  is the horizontal shift (with in a period) relative to the standard 
sinusoidal function and given by 𝜏 = 𝐶

𝐵 .

𝑓(𝑥) = 𝐴 sin(𝐵𝑥 − 𝐶) + 𝐷

𝑥

𝑦

|𝐴|

𝐷 vertical shift

𝑇 =
2𝜋

|𝐵|

𝑇

Midline: 𝑦 = 𝐷

𝑓max = |𝐴| + 𝐷

𝑓min = −|𝐴| + 𝐷

𝜏 = 𝐶
𝐵

• General sinusoidal functions have symmetries similar to the standard ones.
♣︎

Example 4.4.1.  Determine the midline, amplitude, period, and phase shift of the function 
𝑦 = 3 sin(2𝑥 − 𝜋

2 ) + 1.

Solution.  Compare the function to the standard form 𝑦 = 𝐴 sin(𝐵𝑥 − 𝐶) + 𝐷, we have

𝐴 = 3, 𝐵 = 2, 𝐶 = 𝜋
2
, and 𝐷 = 1.

Thus, we can determine the characteristics as follows:

Midline: 𝑦 = Amplitude:

Period: 2𝜋 = Phase Shift:
2

=

4In general, a phase shift of 𝑓  relative to 𝑔 with the same period is a value 𝜏  such that 𝑓(𝑥) = 𝐴𝑔(𝑥 + 𝜏) +
𝐷 for all 𝑥 in the domain of 𝑓 . Be careful, in Physics, the term “phase shift” may have a different meaning.
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Example 4.4.2.  Consider the function 𝑦 = −2 cos(𝜋
2𝑥 + 𝜋) + 3, determine the amplitude, 

period, phase shift, and midline. Then graph the function.

Solution.  Compare the function to the standard form 𝑦 = 𝐴 cos(𝐵𝑥 − 𝐶) + 𝐷, we have

𝐴 = −2, 𝐵 = 𝜋
2
, 𝐶 = −𝜋, and 𝐷 = 3.

Thus, we can determine the characteristics as follows:

Midline: 𝑦 = Amplitude:

Period: 2𝜋 = Phase Shift:
2

=

To sketch the graph, we first plot three dashed horizontal lines:

• the midline 𝑦 = 3,

• the line 𝑦 = 3 + |𝐴| =  passing through a minimum, and

• the line 𝑦 = 3 − |𝐴| =  passing through a minimum.

Then, we plot key points starting from the phase shift 𝑥 = −2 and moving to the right (or 

left) by the quarter period 
𝑇
4

=
4

= . The key points are:

• At 𝑥 = −2, 𝑦 = 3 − |𝐴| =  (minimum because 𝐴 < 0)

• At 𝑥 = −2 + 𝑇
4

= , 𝑦 = 3 (midline because the function must be increasing)

• At 𝑥 = −2 + 𝑇
2

= , 𝑦 = 3 + |𝐴| =  (maximum)

• At 𝑥 = −2 + 3𝑇
4

= , 𝑦 = 3 (midline because the function must be decreasing)

• At 𝑥 = −2 + 𝑇 = , 𝑦 = 3 − |𝐴| =  (minimum)

Finally, we connect the key points with a smooth curve to complete one period of the 
graph, and repeating the same pattern for additional periods.

−3 −2 −1 1 2 3 4 5 6 7 8 𝑥
−1

1

2

3

4

5

6

𝑦

0

Remark

The five key points can also be found by evaluating the function at 𝑥 = −2, −1, 0, 1, 2, 
which are the values phase shift plus multiples of quarter period.
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Example 4.4.3.  Find an equation of the sinusoidal function defined by the following 
graph.

−2𝜋
3 −𝜋

2 −𝜋
3 −𝜋

6
𝜋
6

𝜋
3

𝜋
2

2𝜋
3

𝑥

−2

−1

0

1

2

3

4
𝑦

Solution.  We may assume the function is in the form of 𝑓(𝑥) = 𝐴 sin(𝐵𝑥 − 𝐶) + 𝐷. More
over, we may assume that 𝐵 > 0, otherwise, we can replace 𝐵 with −𝐵 and 𝐶 with −𝐶 
and move the negative sign to 𝐴 using the identity sin(−𝑥) = − sin 𝑥.

From the graph, we see the maximum value is 𝑓max = 3 and the minimum value is 𝑓min =
−1. Thus, we have

𝐷 = 𝑓max + 𝑓min
2

= 1, |𝐴| = 𝑓max − 𝑓min
2

= 2.

Therefore, the midline is 𝑦 = 1 and the amplitude is 2.

Starting to the point (0, 1) on the midline and moving to the right, we see that one com
plete cycle ends at the point (2𝜋

3 , 1). Thus, the period is 𝑇 = . Since 𝐵 is assumed 
to be positive, the formula 𝑇 = 2𝜋

𝐵  gives

𝐵 = 2𝜋
𝑇

= .

Since the 𝑦-intercept (0, 1) is on the midline, comparing with that of 𝑦 = sin 𝑥, we have the 
phase shift is 0. Thus, we have

𝐶 = 𝐵 · = 0.
Now we can write the equation of the sinusoidal function as

𝑓(𝑥) = 𝐴 sin( 𝑥) + .
Since the graph shows that the function is increasing at 𝑥 = 0, we have 𝐴 > 0. Therefore, 
the equation of the sinusoidal function is

𝑓(𝑥) = sin( 𝑥 − ) + .

Remark

Assuming the function is in the form of 𝑓(𝑥) = 𝐴 cos(𝐵𝑥 − 𝐶) + 𝐷, using a similar process, 
one can find that

𝑓(𝑥) = 2 cos(3𝑥 − 𝜋
2
) + 1.
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Exercises

🖊️ Exercise 4.4.1.  Determine the midline, amplitude, period, and phase shift of the function 𝑦 =
2 cos(2𝜋𝑥 − 𝜋) − 1.

Answer: Midline: 𝑦 = −1; Amplitude: 2; Period: 𝑇 = 2𝜋
2𝜋 = 1; Phase Shift: 𝜋

2𝜋 = 1
2 .

🖊️ Exercise 4.4.2.  Given 𝑦 = −3 sin(𝜋
2𝑥 − 𝜋) + 2, determine the amplitude, period, phase shift, and 

midline. Then graph the function.

Answer: Midline: 𝑦 = 2; Amplitude: 3; Period: 4; Phase Shift: −2.

−3−2−1 1 2 3 4 5 6 7 8 𝑥

−2
−1

1
2
3
4
5
6

𝑦

0
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🖊️ Exercise 4.4.3.  Find an equation of the sinusoidal function defined by the following graph.

−𝜋
4−𝜋

2
−3𝜋

4−𝜋−5𝜋
4

𝜋
4

𝜋
2

3𝜋
4 𝜋 5𝜋

4
𝑥

−4

−3

−2

−1

1

2

𝑦

0

Answer: 𝑓(𝑥) = −2 sin(2𝑥) − 1.
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 4.5 Graph of Other Trigonometric Functions

Properties of 𝑦 = 𝐴 tan(𝐵𝑥 − 𝐶) + 𝐷 and 𝑦 = 𝑎 cot(𝐵𝑥 − 𝐶) + 𝐷

Tangent and cotangent functions are periodic odd functions with vertical asymptotes.

Graph of the standard function 𝑦 = tan 𝑥
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Graph of the standard function 𝑦 = cot 𝑥
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Common Properties of 𝑦 = 𝐴 tan(𝐵𝑥 − 𝐶) + 𝐷 and 𝑦 = 𝑎 cot(𝐵𝑥 − 𝐶) + 𝐷

• Period: 
𝜋

|𝐵|
, Range: (−∞, ∞), Phase shift: 

𝐶
𝐵

, Midline: 𝑦 = 𝐷.

• Special points:

(𝑘𝜋
𝐵

+
𝜋
4 + 𝐶

𝐵
, 𝐴 + 𝐷), (𝑘𝜋

𝐵
+

−𝜋
4 + 𝐶
𝐵

, −𝐴 + 𝐷),

which are derived from tan(𝜋
4
) = cot(𝜋

4
) = 1, where 𝑘 is any integer.

• Symmetric with respect to each intersection of the graph or the vertical asymptote with 

the midline because tan(𝑘𝜋
2

+ 𝑥) = − tan(𝑘𝜋
2

− 𝑥) and cot(𝑘𝜋
2

+ 𝑥) = − cot(𝑘𝜋
2

− 𝑥). 

In particular, if 𝐶 = 0 and 𝐷 = 0, that is, no horizontal and vertical shifts, then the 
functions are odd functions.

Properties of 𝑦 = 𝐴 tan(𝐵𝑥 − 𝐶) + 𝐷

• Domain: all real numbers 𝑥 such that 
𝐵𝑥 − 𝐶 ≠ 𝑘𝜋 + 𝜋

2
.

• Vertical asymptotes:

𝑥 = 𝑘𝜋
𝐵

+ 𝜋 + 2𝐶
2𝐵

.

• Increasing (decreasing) within each inter
val (𝑎, 𝑏) in its domain if 𝐴 > 0 (if 𝐴 < 0).

• Points on the midline:

(𝑘𝜋
𝐵

+ 𝐶
𝐵

, 𝐷).

Properties of 𝑦 = 𝑎 cot(𝐵𝑥 − 𝐶) + 𝐷

• Domain: all real numbers 𝑥 such that 
𝐵𝑥 − 𝐶 ≠ 𝑘𝜋.

• Vertical asymptotes:

𝑥 = 𝑘𝜋
𝐵

+ 𝐶
𝐵

.

• Decreasing (increasing) within each inter
val (𝑎, 𝑏) in its domain if 𝐴 > 0 (if 𝐴 < 0).

• Points on the midline:

(𝑘𝜋
𝐵

+ 𝜋 + 2𝐶
𝐵

, 𝐷).

The period is also the distance between two consecutive vertical asymptotes.

135 / 224 PreCalculus Workbook

https://creativecommons.org/licenses/by-nc-sa/4.0/


Chapter 4 Trigonometric Functions 4.5 Graph of Other Trigonometric Functions

Example 4.5.1.  Sketch a graph of one period of the function 𝑦 = 1
2 tan(𝜋

2𝑥).

Solution.  The graph can be sketched using properties of the function.

The period is

𝑇 = 𝜋 = 2.

Since 𝑦 = tan 𝑥 has vertical asymptotes at 𝑥 = ±𝜋
2

, solving 
𝜋
2
𝑥 = ±𝜋

2
 gives the vertical 

asymptotes of the function at
𝑥 = ± .

The midline is 𝑦 = 0, and an 𝑥-intercept is at (0, 0).

Since tan(±𝜋
4
) = ± , solving 

𝜋
2
𝑥 = ±𝜋

4
 gives the special points at

(± , ±1
2
).

Because 𝐴 > 0, the function is increasing in each interval of its domain.

Plotting the asymptotes, intercept, and special points, and connecting them with a 
smooth curve gives the graph of the function within one period.
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−3

−2

−1

0

1

2
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𝑦

Graph of Cotangent Functions

Recall that tangent and cotangent are cofunctions. Then

tan(𝑥) = cot(𝜋
2

− 𝑥) = − cot(𝑥 − 𝜋
2
).

Moreover, the graph of 𝑦 = 𝐴 cot(𝐵𝑥 − 𝐶) can be obtained from the graph of the tangent 
function 𝑦 = 𝐴 tan(𝐵𝑥 − 𝐶) by a horizontal shift of 𝜋

2𝐵  units to the right together with a 
vertical reflection.
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Chapter 4 Trigonometric Functions 4.5 Graph of Other Trigonometric Functions

Properties of 𝑦 = 𝐴 sec(𝐵𝑥 − 𝐶) + 𝐷 and 𝑦 = 𝑎 csc(𝐵𝑥 − 𝐶) + 𝐷

Secant and cosecant functions are also periodic functions with vertical asymptotes.

Graphs of 𝑦 = sec 𝑥 with 𝑦 = cos 𝑥
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Graphs of 𝑦 = csc 𝑥 with 𝑦 = sin 𝑥
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Common Properties of 𝑦 = 𝐴 sec(𝐵𝑥 − 𝐶) + 𝐷 and 𝑦 = 𝑎 csc(𝐵𝑥 − 𝐶) + 𝐷

Period: 
𝜋

2|𝐵|
, Range: (−∞, −|𝐴| + 𝐷] ∪ [|𝐴| + 𝐷, ∞), Phase shift: 

𝐶
𝐵

, Midline: 𝑦 = 𝐷.

The graph has U-shaped and inverted-U-shaped branches that alternate between adja
cent vertical asymptotes.

Properties of 𝑦 = 𝐴 sec(𝐵𝑥 − 𝐶) + 𝐷

• Domain: all real numbers 𝑥 such that 
𝐵𝑥 − 𝐶 ≠ 𝑘𝜋 + 𝜋

2
.

• Vertical asymptotes:

𝑥 = 𝑘𝜋
𝐵

+ 𝜋 + 2𝐶
2𝐵

.

• Turning points:

(2𝑘𝜋
𝐵

+ 𝐶
𝐵

, 𝐴 + 𝐷)

(2𝑘𝜋
𝐵

+ 𝜋 + 𝐶
𝐵

, −𝐴 + 𝐷)

Properties of 𝑦 = 𝑎 csc(𝐵𝑥 − 𝐶) + 𝐷

• Domain: all real numbers 𝑥 such that 
𝐵𝑥 − 𝐶 ≠ 𝑘𝜋.

• Vertical asymptotes:

𝑥 = 𝑘𝜋
𝐵

+ 𝐶
𝐵

.

• Turning points:

(2𝑘𝜋
𝐵

+
𝜋
2 + 𝐶

𝐵
, 𝐴 + 𝐷)

(2𝑘𝜋
𝐵

+
−𝜋

2 + 𝐶
𝐵

, −𝐴 + 𝐷)

The period is twice the distance between two consecutive vertical asymptotes as well as 
the distance between two consecutive turning points with the same 𝑦-coordinate.

The midline 𝑦 = 𝐷 is the horizontal line that has the distance |𝐴| from any turning point. 
Moreover, 𝐷 is the average of the 𝑦-coordinates two consecutive turning points.

Graph of Cosecant Functions

Since sin(𝑥) = cos(𝑥 − 𝜋
2 ), we have csc(𝑥) = sec(𝑥 − 𝜋

2 ). Therefore, the cosecant function 
can be obtained from the secant function by a horizontal shift of 𝜋

2𝐵  units to the right.
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Chapter 4 Trigonometric Functions 4.5 Graph of Other Trigonometric Functions

Reciprocal Relationships

Secant and cosecant are the reciprocal functions of cosine and sine, respectively.

• Where cos 𝑥 or sin 𝑥 is 0, sec 𝑥 or csc 𝑥 has vertical asymptotes.

• Where cos 𝑥 or sin 𝑥 has maximum or minimum values, sec 𝑥 or csc 𝑥 has turning points.

Example 4.5.2.  Determine the equation 𝑦 = 𝐴 sec(𝐵𝑥 − 𝐶) + 𝐷 of the function defined 
by the following graph.

−3 −2 −1 0 1 2 3 4 𝑥

−2

−1

0

1

2

3

4

𝑦

Solution.  Because secant is a even function, we may assume that 𝐵 > 0, otherwise, we 
can replace 𝐵 by −𝐵 and 𝐶 by −𝐶.

Because the distance between two consecutive vertical asymptotes at 𝑥 = −1 and 𝑥 = 0 
is 1, the period is 𝑇 = , and we have

𝐵 =
2

= .

Because the average of 𝑦-coordinates of two consecutive turning points is 2+0
2 = 1, so 

we have

𝐷 =  and the midline line is 𝑦 = 1.

Since (0, 2) is a local minimum, comparing with the standard function 𝑦 = sec 𝑥, we have 
𝐶 = 0 and 𝐴 > 0.

Since the distance from a turning point (0, 2) to the midline 𝑦 = 1 is 1, we have
𝐴 = .

Therefore, the equation of the function is
𝑦 = sec(𝜋𝑥) + 1.
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Exercises

🖊️ Exercise 4.5.1.  Find an equation of the tangent function defined by the following graph.

−2 −1 0 1 2 3 4 5 6 𝑥

−5

−4

−3

−2

−1

0

1

2

3

𝑦

Answer: 𝑓(𝑥) = 2 tan(𝜋
4𝑥) − 1.
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🖊️ Exercise 4.5.2.  Sketch a graph of 𝑓(𝑥) = − sec(𝑥
2 ) + 1 in one period.

Answer:

−𝜋 𝜋 2𝜋 3𝜋 𝑥

−3
−2
−1

0
1
2
3
4
5

𝑦
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Chapter 4 Trigonometric Functions 4.6 Inverse Trigonometric Functions

 4.6 Inverse Trigonometric Functions

Definition 4.6.1 (Inverse Functions of Trigonometric Functions)

Because the trigonometric functions are periodic and not one-to-one on their natural 
domains, their inverses are defined by restricting to a specific interval called the prin
cipal branch.

• The inverse sine function 𝑦 = sin−1 𝑥 is the inverse function of the sine function 𝑦 =
sin 𝑥 with 𝑥 in [−𝜋

2 , 𝜋
2 ]. The notation sin−1 𝑥 is read as “sine inverse of 𝑥”. The inverse 

sine of 𝑥 is also denoted as arcsin 𝑥, and read as “arcsine of 𝑥”.

The domain of sin−1 𝑥 is [−1, 1] and its range is [−𝜋
2 , 𝜋

2 ].

• The inverse cosine function 𝑦 = cos−1 𝑥 is the inverse function of the cosine function 
𝑦 = cos 𝑥 with 𝑥 in [0, 𝜋]. The notation cos−1 𝑥 is read as “cosine inverse of 𝑥”. The inverse 
cosine of 𝑥 is also denoted as arccos 𝑥, and read as “arccosine of 𝑥”.

The domain of cos−1 𝑥 is [−1, 1] and its range is [0, 𝜋].

• The inverse tangent function 𝑦 = tan−1 𝑥 is the inverse function of the tangent func
tion 𝑦 = tan 𝑥 with 𝑥 in (−𝜋

2 , 𝜋
2 ). The notation tan−1 𝑥 is read as “tangent inverse of 𝑥”. 

The inverse tangent of 𝑥 is also denoted as arctan 𝑥, and read as “arctangent of 𝑥”.

The domain of tan−1 𝑥 is (−∞, ∞) and its range is (−𝜋
2 , 𝜋

2 ).

• The inverse cotangent function 𝑦 = cot−1 𝑥 is the inverse function of the cotangent 
function 𝑦 = cot 𝑥 with 𝑥 in (0, 𝜋). The notation cot−1 𝑥 is read as “cotangent inverse of 
𝑥”. The inverse cotangent of 𝑥 is also denoted as arccot 𝑥, and read as “arccotangent 
of 𝑥”.

The domain of cot−1 𝑥 is (−∞, ∞) and its range is (0, 𝜋).

• The inverse secant function 𝑦 = sec−1 𝑥 is the inverse function of the secant function 
𝑦 = sec 𝑥 with 𝑥 in [0, 𝜋

2 ) ∪ (𝜋
2 , 𝜋]. The notation sec−1 𝑥 is read as “secant inverse of 𝑥”. 

The inverse secant of 𝑥 is also denoted as arcsec 𝑥, and read as “arcsecant of 𝑥”.

The domain of sec−1 𝑥 is (−∞, −1] ∪ [1, ∞) and its range is [0, 𝜋
2 ) ∪ (𝜋

2 , 𝜋].

• The inverse cosecant function 𝑦 = csc−1 𝑥 is the inverse function of the cosecant func
tion 𝑦 = csc 𝑥 with 𝑥 in [−𝜋

2 , 0) ∪ (0, 𝜋
2 ]. The notation csc−1 𝑥 is read as “cosecant inverse 

of 𝑥”. The inverse cosecant of 𝑥 is also denoted as arccsc 𝑥, and read as “arccosecant 
of 𝑥”.

The domain of csc−1 𝑥 is (−∞, −1] ∪ [1, ∞) and its range is [−𝜋
2 , 0) ∪ (0, 𝜋

2 ].
♣︎

A Remark on Notations of Inverse Functions

In computer programming languages, the inverse trigonometric functions are often 

called by the abbreviated forms asin , acos , atan .
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Chapter 4 Trigonometric Functions 4.6 Inverse Trigonometric Functions

Graphs of Inverse Trigonometric Functions

The graphs of the inverse trigonometric functions can be obtained from the graphs of 
the corresponding trigonometric functions by reflecting about the line 𝑦 = 𝑥.

Graph of 𝑦 = sin−1 𝑥 and 𝑦 = cos−1 𝑥

−2 −1 0 1 2 𝑥

−𝜋
2

𝜋
2

𝜋
𝑦

𝑦 = sin−1(𝑥)

𝑦 = cos−1(𝑥)

Graph of 𝑦 = tan−1 𝑥 and 𝑦 = cot−1 𝑥
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𝑦 = tan−1(𝑥)

𝑦 = cot−1(𝑥)

Graph of 𝑦 = sec−1 𝑥 and 𝑦 = csc−1 𝑥
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𝑦 = csc−1(𝑥)

Example 4.6.1.  Evaluate each of the following.

1) sin−1(−
√

2
2 ) 2) cos−1(−

√
3

2 ) 3) tan−1(𝜋)

Solution. 

1) Because sin(−𝜋
4 ) = −

√
2

2  and −𝜋
4  is in the range of sin−1 𝑥, we have

sin−1(−
√

2
2

) = .

2) Because cos(5𝜋
6) = −

√
3

2  and 5𝜋
6  is in the range of cos−1 𝑥, we have

cos−1(−
√

3
2

) = .

3) Since 𝜋 is not a value of special angle, we use a calculator to find

tan−1(𝜋) = 2nd2nd2nd2nd2nd2nd2nd + tantantantantantantan + 2nd2nd2nd2nd2nd2nd2nd + ^̂̂̂̂̂̂ + ))))))) + enterenterenterenterenterenterenter = .
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Chapter 4 Trigonometric Functions 4.6 Inverse Trigonometric Functions

Composition Identities: Sine and Cosine of Inverse Trigonometric Functions

From the definition of inverse function and the Pythagorean identities, we have the 
following composition identities for all values of 𝑥 in the domains of the corresponding 
inverse trigonometric functions.

𝜃 = sin−1 𝑥 cos−1 𝑥 tan−1 𝑥 cot−1 𝑥 sec−1 𝑥 csc−1 𝑥

sin 𝜃 = 𝑥
√

1 − 𝑥2
𝑥√

1 + 𝑥2
1√

1 + 𝑥2 √1 − 1
𝑥2

1
𝑥

cos 𝜃 =
√

1 − 𝑥2 𝑥
1√

1 + 𝑥2

𝑥√
1 + 𝑥2

1
𝑥

√1 − 1
𝑥2

Geometric Aproach to Composition Identities

The composition identities in the above box can also be verified geometrically by con
structing right triangles based on the definitions of the inverse trigonometric functions. 
For example, to verify that sin(cos−1 𝑥) =

√
1 − 𝑥2 for −1 ≤ 𝑥 ≤ 1, we can construct a right 

triangle with an acute angle 𝜃 = cos−1 𝑥 with adjacent side length 𝑥 and hypotenuse 
length 1.

By the Pythagorean theorem, the opposite 
side to angle 𝜃 has length 

√
1 − 𝑥2. There

fore, we have

sin(cos−1 𝑥) = sin 𝜃 =
√

1 − 𝑥2. 𝑥

√
1 − 𝑥2

1

𝜃

Other Trigonometric Functions of Inverse Trigonometric Functions

Using the composition identities for sine and cosine of inverse trigonometric functions 
and the basic identities of trigonometric functions, we can find other trigonometric 
functions of inverse trigonometric functions. For example,

tan(sin−1 𝑥) =
sin(sin−1 𝑥)
cos(sin−1 𝑥)

= 𝑥√
1 − 𝑥2

,

where −1 < 𝑥 < 1.

Example 4.6.2.  Find an exact value for sin(cos−1(4
5))

Solution.  Let 𝜃 = cos−1(4
5). From the definition of inverse cosine function, we have

cos 𝜃 = with 0 ≤ 𝜃 ≤ 𝜋.

Then sin 𝜃 > 0. By Pythagorean identity, we can find sin 𝜃 as follows:

sin 𝜃 = √1 − (4
5
)

2

=
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Chapter 4 Trigonometric Functions 4.6 Inverse Trigonometric Functions

Example 4.6.3.  Find an exact value for sin(tan−1(4
7)).

Solution.  Let 𝜃 = tan−1(4
7). From the definition of inverse tangent function, we have

tan 𝜃 = with −𝜋
2

< 𝜃 < 𝜋
2
.

Then sin 𝜃 > 0.

We can assume that 𝜃 is an angle in a right 
triangle with opposite side length 4 and 
adjacent side length 7. By the Pythagorean 
theorem, the hypotenuse has length

√42 + 72 = .

Therefore, we have
sin 𝜃 = .

4

7

√
65

𝜃

Inverse Trigonometric Functions of Sine, Cosine and Tangent

From the definition of inverse functions, we have the following basic indentities for all 
values 𝑥 in the ranges of the corresponding inverse trigonometric functions.

sin−1(sin 𝑥) = 𝑥 only for − 𝜋
2

≤ 𝑥 ≤ 𝜋
2

cos−1(cos 𝑥) = 𝑥 only for 0 ≤ 𝑥 ≤ 𝜋

tan−1(tan 𝑥) = 𝑥 only for − 𝜋
2

< 𝑥 < 𝜋
2
.

For a general value of 𝑥, the inverse trigonometric function of its corresponding trigono
metric function can be found using the reference angle. For example,

sin−1(sin 𝑥) = sign(sin 𝑥) · 𝑥ref

where sign(sin 𝑥) is the sign of sin 𝑥 and 𝑥ref is the reference angle of 𝑥.

Using the cofunction identities, we can obtain the following relationships between inverse 
sine and inverse cosine functions5:

sin−1(𝑦) = 𝜋
2

− cos−1(𝑦) for − 1 ≤ 𝑦 ≤ 1

cos−1(𝑦) = 𝜋
2

− sin−1(𝑦) for − 1 ≤ 𝑦 ≤ 1.

Consequently, we have the following identities

sin−1(cos 𝑥) = 𝜋
2

− 𝑥 for 0 ≤ 𝑥 ≤ 𝜋

cos−1(sin 𝑥) = 𝜋
2

− 𝑥 for − 𝜋
2

≤ 𝑥 ≤ 𝜋
2
.

In genearl, there is no simple formual for other compositions of the form 𝑓−1(𝑔(𝑥)) where 
𝑓 , 𝑔 are trigonometric functions.

5For more relationships among inverse trigonometric functions, please refer to the wikipedia page on 
Inverse trigonometric functions: https://en.wikipedia.org/wiki/Inverse_trigonometric_functions.
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Example 4.6.4.  Evaluate the following.

1) sin−1(sin(𝜋
3)) 2) cos−1(cos(−𝜋

3))

Solution. 

1) Because 𝜋
3  is in the range [−𝜋

2 , 𝜋
2 ] of sin−1 𝑥, we have

sin−1(sin(𝜋
3
)) = .

2) Because −𝜋
3  is not in the range [0, 𝜋] of cos−1 𝑥, we need to find the reference angle of 

−𝜋
3 , which is 𝜋

3 . Since cos(−𝜋
3) = cos(𝜋

3) and 𝜋
3  is in the range of cos−1 𝑥, we have

cos−1(cos(−𝜋
3
)) = .

Example 4.6.5.  Evaluate cos−1(sin(9𝜋
7 )).

Solution.  Because the reference angle of 9𝜋
7  is 2𝜋

7  and

sin(9𝜋
7

) = − sin(2𝜋
7

) = sin( ),

we have

cos−1(sin(9𝜋
7

)) = 𝜋
2

− sin−1(sin(−2𝜋
7

)) = 𝜋
2

− .
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Chapter 4 Trigonometric Functions Exercises

Exercises

🖊️ Exercise 4.6.1.  Evaluate each of the following.

1) sin−1(
√

3
2 ) 2) cos−1(−𝜋

4 ) 3) tan−1(−
√

3
3 )

Answer: 1) 𝜋
3 2) 2.4741 3) −𝜋

6

🖊️ Exercise 4.6.2.  Evaluate the following.

1) sin−1(sin(𝜋
6)) 2) cos−1(cos(−𝜋

4 ))

Answer: 1) 𝜋
6 2) 3𝜋

4
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🖊️ Exercise 4.6.3.  Evaluate cos−1(sin(11𝜋
3 )).

Answer:
5𝜋
6

.

🖊️ Exercise 4.6.4.  Find an exact value.

1) sin(cos−1(3
5)) 2) cos(− tan−1(12

5 ))

Answer: 1) 4
5 2) 5

13
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Chapter 5 Trigonometric Identities and Equations

 5.1 Simplifying Trigonometric Expressions

Basic Trigonometric Identities

Pythagorean Quotient Product Negative Angle

sin2 𝑥 + cos2 𝑥 = 1
1 + tan2 𝑥 = sec2 𝑥
1 + cot2 𝑥 = csc2 𝑥

tan 𝑥 = sin 𝑥
cos 𝑥

cot 𝑥 = cos 𝑥
sin 𝑥

tan 𝑥 cot 𝑥 = 1
sin 𝑥 csc 𝑥 = 1
cos 𝑥 sec 𝑥 = 1

sin(−𝑥) = − sin 𝑥
cos(−𝑥) = cos 𝑥

tan(−𝑥) = − tan 𝑥

Example 5.1.1.  Verify the trigonometric identity.

1) tan 𝜃 cos 𝜃 = sin 𝜃 2) sec2 𝜃 − 1
sec2 𝜃

= sin2 𝜃

Proof. We prove that the left-hand sides can be simplified to the right-hand sides.

1) Simplify the left-hand side:

tan 𝜃 cos 𝜃 = sin 𝜃 cos 𝜃 = sin 𝜃.

Thus, the identity is verified.

2) Simplify the left-hand side:

sec2 𝜃 − 1
sec2 𝜃

= − 1
1

cos2 𝜃
= 1

cos2 𝜃
= 1 − cos2 𝜃 = .

Thus, the identity is verified.

Example 5.1.2.  Simplify the trigonometric identity.

1) sin2(−𝜃) − cos2(−𝜃)
sin(−𝜃) − cos(−𝜃)

2) (1 − cos2 𝑥)(1 + cot2 𝑥)

Solution. 

1) First apply the negative angle identities and difference of squares and then simplify:

sin2(−𝜃) − cos2(−𝜃)
sin(−𝜃) − cos(−𝜃)

= sin2(𝜃) − cos2(𝜃)
− sin(𝜃) − cos(𝜃)

= (sin(𝜃) − cos(𝜃))( )
−(sin(𝜃) + cos(𝜃))

= − .

2) First apply the Pythagorean and Product identities and then simplify:

(1 − cos2 𝑥)(1 + cot2 𝑥) = ( ) sec2 𝑥 = sin2 𝑥 = .
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Exercises

🖊️ Exercise 5.1.1.  Simplify the trigonometric identity.

1) tan 𝑥 sin 𝑥 + sec 𝑥 cos2 𝑥 2) cot 𝑡+ tan 𝑡
sec(−𝑡) 3) 1− cos2 𝑥

tan2 𝑥 + sin2 𝑥

Answer: 1) sec 𝑥 2) csc 𝑡 3) 1
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Chapter 5 Trigonometric Identities and Equations 5.2 Sum and Difference Angle Formulas

 5.2 Sum and Difference Angle Formulas

Theorem 5.2.1 (Sum and Difference Angle Formulas)

The following identities hold for all angles 𝛼 and 𝛽:

sin(𝛼 + 𝛽) = sin 𝛼 cos 𝛽 + cos 𝛼 sin 𝛽
cos(𝛼 + 𝛽) = cos 𝛼 cos 𝛽 − sin 𝛼 sin 𝛽

sin(𝛼 − 𝛽) = sin 𝛼 cos 𝛽 − cos 𝛼 sin 𝛽
cos(𝛼 − 𝛽) = cos 𝛼 cos 𝛽 + sin 𝛼 sin 𝛽

♡

Proof.  We first prove the formulas under the assumption that 𝛼, 𝛽 and 𝛼 + 𝛽 are all in the 
first quadrant. In this case, the formulas follows from the following figures6.

𝛼

𝛼

𝛽

𝛼 + 𝛽

1

cos
𝛽

sin
𝛽

cos 𝛼 cos𝛽

sin
𝛼
co

s
𝛽

co
s
𝛼
sin

𝛽

sin 𝛼 sin𝛽cos(𝛼 + 𝛽)

si
n
(𝛼

+
𝛽
)

𝛼 − 𝛽

𝛼
𝛽

𝛼

1

cos
𝛽

sin
𝛽

sin 𝛼 cos𝛽

co
s
𝛼
co

s
𝛽

sin
𝛼
sin

𝛽

cos 𝛼 sin𝛽sin(𝛼 − 𝛽)

co
s(
𝛼
−
𝛽
)

For other cases, these formulas can be deduced from the first quadrant case using sym
metry, cofunction identities, and the reference angles. ⁠ □

Remark

The sum and difference angle formulas implies the following identities which can also 
obtained using the unit circle and reference angles.

Cofunction Supplementary Angle Half Period Shifting

sin(𝜋
2

− 𝑥) = cos 𝑥

cos(𝜋
2

− 𝑥) = sin 𝑥

tan(𝜋
2

− 𝑥) = cot 𝑥

sin(𝜋 − 𝑥) = sin 𝑥
cos(𝜋 − 𝑥) = − cos 𝑥
tan(𝜋 − 𝑥) = − tan 𝑥

sin(𝑥 ± 𝜋) = − sin 𝑥
cos(𝑥 ± 𝜋) = − cos 𝑥
tan(𝑥 ± 𝜋) = tan 𝑥

6This proof can be found in R. B. Nelsen, Proofs Without Words II, MAA, 2000, p. 46. See also the Wikipedia 
page https://en.wikipedia.org/wiki/List_of_trigonometric_identities#Angle_sum_and_difference_identities.
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Example 5.2.1.  Find the exact value.

1) cos(75°) 2) sin(−7𝜋
12 )

Solution. 

1) We can use the sum angle formula with 𝛼 = 45° and 𝛽 = 30°:
cos(75°) = cos(45° + 30°)

= cos 45° · − · sin 30°

= ·
√

3
2

−
√

2
2

·

=
√

6 −
√

2
4

.

2) We can use the difference angle formula with 𝛼 = 𝜋
3  and 𝛽 = 𝜋

4 :

sin(−7𝜋
12

) = − sin(7𝜋
12

)

= − sin(𝜋
3

+ 𝜋
4
)

= −(sin(𝜋
3
) cos(𝜋

4
) + cos(𝜋

3
) sin(𝜋

4
))

= −( · + · )

= −
√

6 +
√

2
4

.

Example 5.2.2.  Find the exact value of sin(cos−1(1
2) + sin−1(3

5)).

Solution.  Let 𝛼 = cos−1(1
2) and 𝛽 = sin−1(3

5). Then we have

cos 𝛼 = 1
2

and sin 𝛽 = 3
5
.

Because both sin(cos−1 𝑥) and cos(sin−1 𝑥) are positive for 𝑥 in their domains, using the 
Pythagorean identity, we get

sin 𝛼 = √1 − (1
2
)

2
= and cos 𝛽 = √1 − (3

5
)

2
= .

From the sum angle formula for sine, we have
sin(𝛼 + 𝛽) = sin 𝛼 cos 𝛽 + cos 𝛼 sin 𝛽

= ( · + · )

= 27 + 4
√

3
20

.
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Example 5.2.3.  Given sin 𝛼 = 3
5 , 0 < 𝛼 < 𝜋

2 , and cos 𝛽 = − 5
13 , 𝜋 < 𝛽 < 3𝜋

2 , find

1) sin(𝛼 + 𝛽) 2) cos(𝛼 − 𝛽) 3) tan(𝛼 + 𝛽) 4) csc(𝛼 − 𝛽)

Solution.  We first find cos 𝛼 and sin 𝛽 using the Pythagorean identity:

cos 𝛼 =
√

1 − sin2 𝛼 = √1 − (3
5
)

2
= ,

sin 𝛽 = −√1 − cos2 𝛽 = −√1 − (− 5
13

)
2

= .

1) Using the sum angle formula for sine, we have
sin(𝛼 + 𝛽) = sin 𝛼 cos 𝛽 + cos 𝛼 sin 𝛽

= 3
5

· (− 5
13

) + ·

= .

2) Using the difference angle formula for cosine, we have
cos(𝛼 − 𝛽) = cos 𝛼 cos 𝛽 + sin 𝛼 sin 𝛽

= · (− 5
13

) + 3
5

·

= .

3) Because we already found sin(𝛼 + 𝛽), to find tan(𝛼 + 𝛽), we find cos(𝛼 + 𝛽) and then 
apply the Quotient identity.

cos(𝛼 + 𝛽) = cos 𝛼 cos 𝛽 − sin 𝛼 sin 𝛽

= · (− 5
13

) − 3
5

·

= .

Thus,

tan(𝛼 + 𝛽) = sin(𝛼 + 𝛽)
cos(𝛼 + 𝛽)

= .

4) Using the difference angle formula for sine, we have
sin(𝛼 − 𝛽) = sin 𝛼 cos 𝛽 − cos 𝛼 sin 𝛽

= 3
5

· (− 5
13

) − ·

= .

Thus,

csc(𝛼 − 𝛽) = 1
sin(𝛼 − 𝛽)

= .
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Exercises

🖊️ Exercise 5.2.1.  Find the exact value.

1) sin(−5𝜋
12) 2) cos(17𝜋

12 )

Answer: 1) −
√

6+
√

2
4 2) −

√
6−

√
2

4

🖊️ Exercise 5.2.2.  Find the exact value of cos(cos−1(1
3) − sin−1(4

5)).

Answer: 3+8
√

2
15
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🖊️ Exercise 5.2.3.  Given sin 𝛼 = −4
5 , 𝜋 < 𝛼 < 3𝜋

2 , and cos 𝛽 = 12
13 , 0 < 𝛽 < 𝜋

2 , find

1) sin(𝛼 − 𝛽) 2) cos(𝛼 + 𝛽) 3) cot(𝛼 − 𝛽)

Answer: 1) −33
65 2) −16

65 3) 56
33

🖊️ Exercise 5.2.4.  Verify the identity

sin(𝛼 + 𝛽) + sin(𝛼 − 𝛽) = 2 sin 𝛼 cos 𝛽.
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 5.3 Double/Half Angle Formulas

Theorem 5.3.1 (Double and Half Angle Formulas)

Double Angle Formulas

sin(2𝛼) = 2 sin 𝛼 cos 𝛼 cos(2𝛼) = cos2 𝛼 − sin2 𝛼

Half Angle Formulas

sin2(𝜃
2
) = 1 − cos 𝜃

2
cos2(𝜃

2
) = 1 + cos 𝜃

2
♡

Proof.  The double angle formulas follow directly from the sum angle formulas by setting 
𝛽 = 𝛼. The half angle formulas can be derived from the double angle formulas by solving 
for sin2(𝜃

2) and cos2(𝜃
2) in the double angle formulas after replacing 𝛼 by 𝜃

2 . We leave the 
details to the reader. ⁠ □

Other Forms of the Double Angle Formula for Cosine

From the Pythagorean identity, we have the following equivalent forms of the double 
angle formula for cosine:

cos(2𝛼) = 2 cos2 𝛼 − 1

= 1 − 2 sin2 𝛼.

Example 5.3.1.  Find sin 15° and cos 15°.

Solution.  We can use the half angle formulas with 𝜃 = 30°:

sin 15° = sin(30°
2

) = √1 − cos 30°
2

= √
4

=
√2 −

√
3

2
,

cos 15° = cos(30°
2

) = √1 + cos 30°
2

= √
4

=
√

2
.

Remark

Note that we have already found cos 15° in the previous section using the sum angle 
formula. The result here is consistent with the one previously obtained because

2 +
√

3 = 3
2

− 2√3
2
√1

2
+ 1

2
= (√3

2
+ √1

2
)

2

= (
√

6 +
√

2
2

)
2

and thus

√2 +
√

3
2

=
√(

√
6+

√
2

2 )
2

2
=

√
6 +

√
2

4
.
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Example 5.3.2.  Find the exact value.

1) sin(2 cos−1(3
5)) 2) tan(2 sin−1(3

5))

Solution.  Let 𝛼 = cos−1(3
5). Then we have

cos 𝛼 = 3
5
.

Using the Pythagorean identity, we get

sin 𝛼 = √1 − (3
5
)

2
= .

From the double angle formula for sine, we have
sin(2𝛼) = 2 sin 𝛼 cos 𝛼

= 2 · 3
5

= 24
25

.

Let 𝛽 = sin−1(3
5). Then we have

sin 𝛽 = 3
5
.

Using the Pythagorean identity, we get

cos 𝛽 = √1 − (3
5
)

2
= .

From the double angle formulas for sine and cosine and the quotient formular for 
tangent, we have

tan(2𝛽) = sin(2𝛽)
cos(2𝛽)

= 2 sin 𝛽 cos 𝛽
cos2 𝛽 − sin2 𝛽

=
2 · 3

5 ·

( )
2

− (3
5)2

= 24
7

.

Example 5.3.3.  Given that tan 𝛼 = 8
15  and 𝛼 lies in quadrant III, find the exact value of the 

following:

1) sin(𝛼
2 ) 2) cos(𝛼

2 ) 3) tan(𝛼
2 )

Solution.  Because 𝛼 lies in quadrant III, 𝜋 < 𝛼 < 3𝜋
2  and hence 𝜋2 < 𝛼

2 < 3𝜋
4 < 𝜋. Therefore, 

both sin 𝛼 and cos 𝛼 are negative, sin(𝛼
2 ) is positive and cos(𝛼

2 ) is negative.

Using the Pythagorean identity and the Quotient identity, we have

cos 𝛼 = −√ 1
1 + tan2 𝛼

= −√
1

1 + ( 8
15)2 = ,

sin 𝛼 = tan 𝛼 · cos 𝛼 = 8
15

· (−15
17

) = .

1) From the half angle formula for sine, we have
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sin(𝛼
2

) = √1 − cos 𝛼
2

= √1 − (−15
17)

2
= √ = 4

√
17

17
.

2) From the half angle formula for cosine, we have

cos(𝛼
2

) = −√1 + cos 𝛼
2

= −√1 + (−15
17)

2
= −√ = −

√
17

17
.

3) From the half angle formula for tangent, we have

tan(𝛼
2

) =
sin 𝛼

2
cos 𝛼

2
= .

Double and Half Angle Formulas for Tangent

From the double and half angle formulas for sine and cosine and the Quotient identity, 
we have the following formulas for tangent:

tan(2𝛼) = 2 tan 𝛼
1 − tan2 𝛼

,

tan(𝛼
2

) = sin 𝛼
1 + cos 𝛼

= 1 − cos 𝛼
sin 𝛼

.

In later sections, we will solve equations involving powers of sine and cosine. The following 
example shows how to use the double and half angle formulas to rewrite such expressions 
into equivalent expressions without powers greater than 1.

Example 5.3.4.  Write the expression into an equivalent expression without any powers 
greater than 1.

1) cos4 𝑥 2) sin3 𝑥 cos 𝑥

Solution. 

1) Using the half angle formula for cosine 
twice, we have

cos4 𝑥 = (cos2 𝑥)2

= (1 + cos(2𝑥)
2

)
2

= 1
4
(1 + 2 cos(2𝑥) + cos2(2𝑥))

= 1
4
(1 + 2 cos(2𝑥) +

2
)

= .

2)  Using the double angle formula for sine 
and the half angle formula for cosine, we 
have

sin3 𝑥 cos 𝑥 = sin2 𝑥 · (sin 𝑥 · cos 𝑥)

= 1 − cos(2𝑥)
2

·
2

= 1
4

· − 1
4

sin(2𝑥) cos(2𝑥)

= .
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Exercises

🖊️ Exercise 5.3.1.  Find the exact value.

1) cos(2 sin−1(4
5)) 2) tan(2 cos−1(4

5))

Answer: 1) − 7
25 2) 24

7

🖊️ Exercise 5.3.2.  Given that sin 𝛼 = −4
5 and 𝛼 lies in quadrant IV, find the exact value of tan(𝛼

2 ).

Answer: −1
2
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🖊️ Exercise 5.3.3.  Rewrite the expression with no exponent higher than 1 and no product of two 

trigonometric functions.

1) 8 sin4(3𝑥
2 ) 2) 4 cos3(𝑥) sin 𝑥.

Answer: 1) 3
8 − 1

2 cos(3𝑥) + 1
8 cos(6𝑥) 2) 3

4 sin(2𝑥) + 1
4 sin(4𝑥)
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 5.4 Sum-to-Product and Product-to-Sum Formulas

Theorem 5.4.1 (Product-to-Sum and Sum-to-Product Identities)

Product-to-Sum Identities

cos 𝛼 cos 𝛽 = 1
2
(cos(𝛼 − 𝛽) + cos(𝛼 + 𝛽))

sin 𝛼 cos 𝛽 = 1
2
(sin(𝛼 + 𝛽) + sin(𝛼 − 𝛽))

sin 𝛼 sin 𝛽 = 1
2
(cos(𝛼 − 𝛽) − cos(𝛼 + 𝛽))

Sum-to-Product Identities

cos 𝛼 + cos 𝛽 = 2 cos(𝛼 + 𝛽
2

) cos(𝛼 − 𝛽
2

)

sin 𝛼 + sin 𝛽 = 2 sin(𝛼 + 𝛽
2

) cos(𝛼 − 𝛽
2

)

cos 𝛼 − cos 𝛽 = −2 sin(𝛼 + 𝛽
2

) sin(𝛼 − 𝛽
2

)
♡

Proof.  The product-to-sum identities can be derived by applying the sum and difference 
angle formulas.

The sum-to-product identities can be derived from the product-to-sum identities by replac
ing 𝛼 and 𝛽 with 𝛼+𝛽

2  and 𝛼−𝛽
2  respectively.

We leave the details to the reader. ⁠ □

Example 5.4.1.  Write the following product as a sum

1) 2 cos(7𝑥
2 ) cos(3𝑥

2 ) 2) sin(3𝜃) cos(5𝜃)

Solution. 

1) Using the product-to-sum identity for cosine, we have

2 cos(7𝑥
2

) cos(3𝑥
2

) = cos(7𝑥
2

− 3𝑥
2

) + cos(7𝑥
2

+ 3𝑥
2

)

= .

2) Using the product-to-sum identity for sine and cosine, we have

sin(3𝜃) cos(5𝜃) = 1
2
(sin(3𝜃 + 5𝜃) + sin(3𝜃 − 5𝜃))

= 1
2
(sin( ) + sin( ))

= .
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Example 5.4.2.  Write the following difference or sum expression as a product.

1) sin(3𝜃) − sin 𝜃 2) cos(2𝜃) + cos(4𝜃) 3) sin 𝜃 − cos 𝜃

Solution. 

1) Using the sum-to-product identity for sine, we have

sin(3𝜃) − sin 𝜃 = 2 cos(3𝜃 + 𝜃
2

) sin(3𝜃 − 𝜃
2

)

= 2 cos(2𝜃) sin(𝜃).

2) Using the sum-to-product identity for cosine, we have

cos(2𝜃) + cos(4𝜃) =

= 2 cos(3𝜃) cos(−𝜃)
= 2 cos(3𝜃) .

3) Using the cofunction identity and sum-to-product identities for sine, we have
sin 𝜃 − cos 𝜃 = sin 𝜃 − sin( )

= 2 sin(𝜃 +
2

) cos(𝜃 −
2

)

= 2 sin(𝜋
4
) cos(

4
)

= .
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Exercises

🖊️ Exercise 5.4.1.  Write the following product as a sum

1) sin(𝜃
2) cos(5𝜃

2 ) 2) sin(4𝜃) sin(2𝜃)

Answer: 1) 1
2(sin(3𝜃) − sin(2𝜃)) 2) 1

2(cos(2𝜃) − cos(6𝜃))

🖊️ Exercise 5.4.2.  Write the following difference or sum expression as a product.

1) sin(5𝜃) − sin 𝜃 2) cos(𝜃) + sin(𝜃) 3) cos(3𝜃) + cos(5𝜃)

Answer: 1) 2 cos(3𝜃) sin(2𝜃) 2)
√

2 sin(𝜃 + 𝜋
4 ) 3) 2 cos(4𝜃) cos(𝜃)
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Chapter 5 Trigonometric Identities and Equations Exercises

🖊️ Exercise 5.4.3.  Find the exact value.

1) sin(75°) − cos(75°) 2) sin(15°) + sin(135°)

Answer: 1)
√

2
2 2)

√
2+

√
6

2
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Chapter 5 Trigonometric Identities and Equations 5.5 Solving Trigonometric Equations

 5.5 Solving Trigonometric Equations

How to Solve a Trigonometric Equation

To solve a trigonometric equation of an angle 𝜃, we typically follow these steps:

1) Use algebraic manipulation and trigonometric identities to express the equation in the 
standard form:

𝑓(𝑋) = 𝑐,
where 𝑓  is a basic trigonometric function (sin, cos, or tan), 𝑋 is an expression in 𝜃, and 
𝑐 is a constant. Note that the other three trigonometric functions (csc, sec, and cot) are 
reciprocals of sin, cos, and tan respectively.

2) Apply the inverse trigonometric function to both sides to find a particular solution 𝑋 =
𝑓−1(𝑐) and use symmetry and periodicity to find the general solution for 𝑋:

• If 𝑓(𝑋) = sin 𝑋, then the general solution is

𝑋 = sin−1(𝑐) + 2𝑘𝜋 or 𝑋 = 𝜋 − sin−1(𝑐) + 2𝑘𝜋, 𝑘 ∈ ℤ.

• If 𝑓(𝑋) = cos 𝑋, then the general solution is

𝑋 = cos−1(𝑐) + 2𝑘𝜋 or 𝑋 = − cos−1(𝑐) + 2𝑘𝜋, 𝑘 ∈ ℤ.
• If 𝑓(𝑋) = tan 𝑋, then the general solution is

𝑋 = tan−1(𝑐) + 𝑘𝜋, 𝑘 ∈ ℤ.

3) Solve for 𝜃 in the specified interval from the general solution for 𝑋.

Remark

The reason that we have two forms for the general solutions of sin 𝑋 = 𝑐 and cos 𝑋 = 𝑐 
lies in the symmetries of their graphs. Specifically, consider the following identities:

sin(𝜋
2

+ 𝑋) = sin(𝜋
2

− 𝑋) and cos(𝑋) = cos(−𝑋).

By substituting 𝑋 with 𝜋
2 − 𝑋, the first identity becomes

sin(𝑋) = sin(𝜋 − 𝑋).
It follows that if 𝑋 = sin−1(𝑐) is a solution to sin 𝑋 = 𝑐, then 𝑋 = 𝜋 − sin−1(𝑐) is also a 
solution.

Similarly, if 𝑋 = cos−1(𝑐) is a solution to cos 𝑋 = 𝑐, then 𝑋 = − cos−1(𝑐) is also a solution.

However, for tan 𝑋, the symmetries,

tan(𝑘𝜋
2

+ 𝑋) = − tan(𝑘𝜋
2

− 𝑋) = tan(𝑋 − 𝑘𝜋
2

),

implies that tan(𝑋) = tan(𝑘𝜋 − 𝑋). Hence, any two solutions of tan 𝑋 = 𝑐 differ by 𝑘𝜋 for 
some integer 𝑘, which is already captured in the general solution.
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Chapter 5 Trigonometric Identities and Equations 5.5 Solving Trigonometric Equations

Example 5.5.1.  Find all solutions in their exact form for the equation.

1) cos 𝜃 = 1
2 2) sin 𝜃 = 1

2

Solution. 

1) We apply the inverse cosine function to both sides to find a particular solution:

𝜃 = cos−1(1
2
) = .

Using the general solution for cosine, we have

𝜃 = + 2𝑘𝜋 or 𝜃 = − + 2𝑘𝜋, 𝑘 ∈ ℤ.

2) We apply the inverse sine function to both sides to find a particular solution:

𝜃 = sin−1(1
2
) = .

Using the general solution for sine, we have

𝜃 = + 2𝑘𝜋 or 𝜋 − + 2𝑘𝜋 = + 2𝑘𝜋, 𝑘 ∈ ℤ.

Example 5.5.2.  Solve the equation exactly:
2 cos 𝜃 − 3 = −5, 0 ≤ 𝜃 < 2𝜋.

Solution.  We first isolate the cosine function:
2 cos 𝜃 = −2

cos 𝜃 = −1.
We apply the inverse cosine function to both sides to find a particular solution:

𝜃 = cos−1(−1) = .

Using the general solution for cosine, we have

𝜃 = + 2𝑘𝜋 or 𝜃 = − + 2𝑘𝜋, 𝑘 ∈ ℤ.

Because 0 ≤ 𝜃 < 2𝜋, both forms of the general solutions lead to the same solution

𝜃 = .

Example 5.5.3.  Solve the equation exactly:

2 sin2 𝜃 − 1 = 0, 0 ≤ 𝜃 < 2𝜋.

Solution.  By the double angle formula for cosine: cos(2𝜃) = 1 − 2 sin2 𝜃, we see that the 
equation is equivalent to cos(2𝜃) = 0.
Therefore, 2𝜃 = + 2𝑘𝜋 or 2𝜃 = − + 2𝑘𝜋

𝜃 = + 𝑘𝜋 or 𝜃 = − + 𝑘𝜋.

Because 0 ≤ 𝜃 < 2𝜋, the solutions are

𝜃 = , , , .
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Example 5.5.4.  Solve the equation exactly:

4 cos2 𝜃 + 3 cos 𝜃 − 1 = 0, 0 ≤ 𝜃 < 2𝜋.

Solution.  We first substitute cos 𝜃 by 𝑥 and solve the resulting quadratic equation:

4𝑥2 + 3𝑥 − 1 = 0
(4𝑥 − 1)( ) = 0

4𝑥 − 1 = 0 or = 0

𝑥 = 1
4

or 𝑥 = −1.

We now solve for 𝜃 in each case.

1) When cos 𝜃 = 1
4 , we apply the inverse cosine function to both sides to find a particular 

solution:

𝜃 = cos−1(1
4
) = .

Using the general solution for cosine, we have

𝜃 = + 2𝑘𝜋 or 𝜃 = − + 2𝑘𝜋, 𝑘 ∈ ℤ.

Because 0 ≤ 𝜃 < 2𝜋, the solutions are

𝜃 = , .

2) When cos 𝜃 = −1, we apply the inverse cosine function to both sides to find a particular 
solution:

𝜃 = cos−1(−1) = .

Using the general solution for cosine, we have

𝜃 = + 2𝑘𝜋 or 𝜃 = − + 2𝑘𝜋, 𝑘 ∈ ℤ.

Because 0 ≤ 𝜃 < 2𝜋, there is only one solution and the solution is

𝜃 = .

Remark

In the previous example, because 0 ≤ 𝜃 ≤ 2𝜋, we could 
directly determine 𝜃 from the unit circle. For example, for 
cos 𝜃 = 1

4 , the figure on the right shows two solutions: 𝜃1 =
cos−1(1

4) and 𝜃2 = 2𝜋 − cos−1(1
4).

However, in general, if the equation involves a multiple 
angle, such as cos(2𝜃) or sin(3𝜃). In such cases, it is better to 
rely on the general solution approach as the unit circle may 
not directly provide all solutions in the specified interval.

𝜃1𝜃2

1
4 1
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Chapter 5 Trigonometric Identities and Equations 5.5 Solving Trigonometric Equations

Example 5.5.5.  Solve the equation exactly: 2 cos2 𝜃 − 3 sin 𝜃 = 3.

Solution.  By Pythagorean identity, cos2 𝜃 = 1 − sin2 𝜃, we can solve for sin 𝜃 as follows:

2(1 − sin2 𝜃) − 3 sin 𝜃 = 3

−2 sin2 𝜃 − 3 sin 𝜃 + 2 = 0
2 sin2 𝜃 + 3 sin 𝜃 − 2 = 0

( )(sin 𝜃 + 2) = 0
= 0 or sin 𝜃 + 2 = 0

sin 𝜃 = or sin 𝜃 = −2
The equation sin 𝜃 = −2 has no solution because the range of the sine function is [−1, 1]. 
For the equation

sin 𝜃 = 1
2
,

applying the inverse sine function to both sides gives a particular solution:

𝜃 = sin−1(1
2
) = .

The following general solutions are

𝜃 = + 2𝑘𝜋 or 𝜃 = + 2𝑘𝜋.

Example 5.5.6.  Solve the equation exactly:

cos 𝑥 cos(2𝑥) − sin 𝑥 sin(2𝑥) =
√

3
2

, 0 ≤ 𝑥 < 𝜋.

Solution.  By the sum angle formula for cosine, we have
cos 𝑥 cos(2𝑥) − sin 𝑥 sin(2𝑥) = cos(𝑥 + 2𝑥) = cos(3𝑥).

Therefore, the equation is equivalent to

cos(3𝑥) =
√

3
2

.

We apply the inverse cosine function to both sides to find a particular solution:

3𝑥 = cos−1(
√

3
2

) = .

Using the general solution for cosine, we have

3𝑥 = + 2𝑘𝜋 or 3𝑥 = − + 2𝑘𝜋, 𝑘 ∈ ℤ.

Dividing both sides by 3, we get

𝑥 =
3

+ 2𝑘𝜋
3

or 𝑥 = −
3

+ 2𝑘𝜋
3

.

Because 0 ≤ 𝑥 < 2𝜋, the solutions are

𝑥 = , , .
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Chapter 5 Trigonometric Identities and Equations 5.5 Solving Trigonometric Equations

Example 5.5.7.  Solve the equation exactly:
cos(3𝜃) = cos 𝜃, where 0 ≤ 𝜃 < 𝜋.

Solution.  By the sum-to-product identity for cosine, we have

cos(3𝜃) − cos 𝜃 = −2 sin(3𝜃 + 𝜃
2

) sin(3𝜃 − 𝜃
2

)

= −2 sin(2𝜃) sin(𝜃).
Therefore, the equation is equivalent to

−2 sin(2𝜃) sin(𝜃) = 0
sin(2𝜃) = 0 or sin(𝜃) = 0.

1) For the equation sin(2𝜃) = 0, we apply the inverse sine function to both sides to find a 
particular solution:

2𝜃 = sin−1(0) = .

Using the general solution for sine, we have

2𝜃 = + 2𝑘𝜋 or 2𝜃 = + 2𝑘𝜋.

Dividing both sides by 2, we get

𝜃 = + 𝑘𝜋 or 𝜃 = + 𝑘𝜋.

Because 0 ≤ 𝜃 < 𝜋, the solutions are

𝜃 = , .

2) For the equation sin(𝜃) = 0, we apply the inverse sine function to both sides to find a 
particular solution:

𝜃 = sin−1(0) = .

Using the general solution for sine, we have

𝜃 = + 2𝑘𝜋 or 𝜃 = + 2𝑘𝜋.

Because 0 ≤ 𝜃 < 𝜋, there is only one solution and the solution is

𝜃 = .

Therefore, the solutions to the original equation are

𝜃 = , , .
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Chapter 5 Trigonometric Identities and Equations Exercises

Exercises

🖊️ Exercise 5.5.1.  Solve the equation exactly:

4 sin 𝜃 cos 𝜃 −
√

3 = 0, 0 ≤ 𝜃 < 2𝜋.

Answer: 𝜃 = 𝜋
6
, 𝜋

3
, 7𝜋

6
, 4𝜋

3
.

🖊️ Exercise 5.5.2.  Solve the equation exactly:

cos2 𝜃 − 2 cos 𝜃 − 3 = 0, 0 ≤ 𝜃 < 2𝜋.

Answer: 𝜃 = 𝜋.
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🖊️ Exercise 5.5.3.  Solve the equation exactly over the given interval:

2 cos2 𝜃 − 9 sin 𝜃 + 3 = 0, 0 ≤ 𝜃 < 2𝜋.

Answer: 𝜃 = 𝜋
6 , 5𝜋

6 .

🖊️ Exercise 5.5.4.  Solve the equation exactly over the given interval:

sin 𝑥 cos(2𝑥) + cos 𝑥 sin(2𝑥) = 1
2
, 0 ≤ 𝑥 < 𝜋.

Answer: 𝑥 = 𝜋
18

, 5𝜋
18

, 13𝜋
18

, 17𝜋
18

.
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Chapter 6 Laws of Sines and Cosines

 6.1 Law of Sines

Theorem 6.1.1 (Law of Sines)

Given a triangle △ 𝐴𝐵𝐶 with sides of lengths 𝑎, 𝑏, and 𝑐 opposite to angles 𝐴, 𝐵, and 𝐶, 
respectively, then

sin 𝐴
𝑎

= sin 𝐵
𝑏

= sin 𝐶
𝑐

or 𝑎
sin 𝐴

= 𝑏
sin 𝐵

= 𝑐
sin 𝐶

♡

Proof. It follows from the following theorem of area of triangle using SAS (side-angle-side).
⁠ □

Theorem 6.1.2 (Area of Triangle Using SAS)

Given a triangle △ 𝐴𝐵𝐶 with sides of lengths 𝑎, 𝑏, and 𝑐 opposite to angles 𝐴, 𝐵, and 𝐶, 
respectively, then the area 𝑆 of the triangle is

𝑆 = 1
2
𝑎𝑏 sin 𝐶 = 1

2
𝑎𝑐 sin 𝑏 = 1

2
𝑏𝑐 sin 𝐴.

♡

Proof.  We proof the first formula only. Other two formulas can be proved similarly.

Drop a perpendicular line from vertex 𝐵 to 
side 𝐴𝐶 at point 𝐷. Then

𝑆 = 1
2

base · height = 1
2
𝑎 · ℎ = 1

2
𝑎 · 𝑏 sin 𝐶.

𝐴

𝐵 𝐶𝐷

𝑏

𝑎

𝑏sin
𝐶

⁠ □

Example 6.1.1.  Solve for the unknown side and angles. Round your answers to the 
nearest tenth.

𝐵𝐴

𝐶

50° 30°

10

Solution.  Because the sum of the angles in a triangle is 
180°, we have

𝐶 = 180° − 50° − 30° = .
Using the Law of Sines, we have

𝐴𝐶
sin 30°

= 𝐴𝐵
sin 100°

= 10
sin 50°

.

Thus,

𝐴𝐵 = · 10
sin 50°

≈ 7.66 and 𝑏 = · 10
sin 50°

≈ 5.13.
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Chapter 6 Laws of Sines and Cosines 6.1 Law of Sines

Example 6.1.2.  Solve for the unknown side and angles. Round your answers to the 
nearest tenth.

𝐵

𝐴

𝐶
84°

12

7

Solution.  We first find the angle 𝐴. Using the Law of Sines, 
we have

sin 𝐴
7

= sin 84°
12

sin 𝐴 = · sin 84°
12

Because both 𝐴 and 𝐶 are acute angles as shown in the

figure, we have

𝐴 = sin−1(7 sin 84°
12

) ≈ .

Thus,
𝐶 = 180° − 84° − 𝐴 ≈ .

Apply the Law of Sines again to find side 𝐴𝐵:
𝐴𝐵

sin 84°
= 7

sin 𝐴

𝐴𝐵 = · sin 84°
sin 𝐴

≈ .

Example 6.1.3.  Solve for the unknown side and angles. Round your answers to the 
nearest tenth.

𝐵

𝐴 𝐶
35°

8
5

Solution.  We first find the angle 𝐶. Using the Law of Sines, 
we have

sin 𝐶
8

= 5
sin 35°

sin 𝐶 =
sin 35°

Thus,
𝐶 = 𝜋 − sin−1( ) ≈ , and 𝐵 = 180° − 35° − 𝐶 ≈ .

Apply the Law of Sines again to find side 𝐴𝐶:
𝐴𝐶
sin 𝐵

= 5
sin 35°

𝐴𝐶 = · sin 𝐵
sin 35°

≈ .

Be Aware of the Angle Measurement Unit

When calculating the angle using the inverse sine function, be aware of the measurement 
unit (degree vs. radian) set on your calculator.
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Chapter 6 Laws of Sines and Cosines 6.1 Law of Sines

Example 6.1.4.  Find all possible triangles if one side has length 3 opposite an angle of 
45°, and a second side has length 7.

Solution. 

The angle measured 45° is 𝐴, the side of length 7 is 𝐴𝐵, 
and the side opposite to 𝐴 is 𝐵𝐶. Using the Law of Sines, 
we have

sin 𝐶
7

= sin 45°
3

sin 𝐵 = · sin 45°
3

.

𝐵

𝐴
𝐶 𝐶′

45°

7
3

3

Note that as an angle of a triangle, 0 < 𝐵 < 180°. Thus, as shown in the figure above, 
there are two possible positions for the side 𝐵𝐶, and hence two possible values 𝛼 and 𝛽 
as shown in the figure above for angle 𝐵:

∠𝐴𝐵𝐶 = sin−1( ) ≈ , and ∠𝐴𝐵𝐶′ = 180° − ∠𝐴𝐵𝐶 ≈ .
For angle ∠𝐴𝐵𝐶, we have

∠𝐴𝐶𝐵 = 180° − 45° − ∠𝐴𝐵𝐶 ≈ .
Using the Law of Sines again, we have

𝐵𝐶 = · 3
sin 45°

≈ .

For angle ∠𝐴𝐵𝐶′, we have
∠𝐴𝐶′𝐵 = 180° − 45° − ∠𝐴𝐵𝐶′ ≈ .

Using the Law of Sines again, we have

𝐵𝐶′ = · 3
sin 45°

≈ .

Example 6.1.5.  Find the area of a triangle with sides 𝑎 = 90, 𝑏 = 72, and the angle 𝐶 =
121° formed by those two sides. Round the area to the nearest integer.

Solution.  By the area formula for a triangle with known side, angle, side, the area is

𝑆 = 1
2
𝑎 · 𝑏 · sin 𝐶

= 1
2

· 90 · 72 · sin 121°

≈

𝐴

𝐵
𝐶

121°
72

90
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Chapter 6 Laws of Sines and Cosines 6.1 Law of Sines

Example 6.1.6.  Find the altitude of the aircraft shown in the figure below. Round the 
altitude to the nearest tenth of a mile.7

Solution.  Suppose the height of the aircraft is ℎ miles. From the definition of sine function, 
we have

ℎ = 𝑎 sin 15°.
To find 𝑎, we find the angle, denoted as 𝛽, with the vertex at the aircraft formed by sides 
through two radars:

𝛽 = 180° − − = 130°.
From the Law of Sines, we have

𝑎
sin 35°

= 20 miles
sin( )

𝑎 = · 20 miles ≈ miles.

Thus, the altitude of the aircraft is
ℎ = 𝑎 sin 15° ≈ miles.

7Source: OpenStax, Precalculus, CC BY-NC-SA 4.0
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Exercises

🖊️ Exercise 6.1.1.  Solve for the unknown side and angles. Round your answers to the nearest tenth.

1)

𝐵𝐴

𝐶

40° 60°

12

2)

𝐵𝐴

𝐶

20°
17

10

Answer: 1) 𝐶 ≈ 80°, 𝐴𝐵 ≈ 13.6, and 𝐵𝐶 ≈ 8.9. 2) 𝐶 ≈ 11.6°, 𝐴 ≈ 148.4°, and 𝐵𝐶 ≈ 15.3.
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Chapter 6 Laws of Sines and Cosines Exercises

🖊️ Exercise 6.1.2.  It is known that lengths of two sides of a triangle 15 and 10. The angle opposite 

to the sides of length 15 is 75 deg.

1) Find the the length of the unknown side.

2) Find area of a triangle.

Round your answers to the nearest tenth.

Answer: The length of the third side is approximate 14.1. The area is approximately 67.9.
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Chapter 6 Laws of Sines and Cosines Exercises

🖊️ Exercise 6.1.3. The Figure below shows a satellite orbiting Earth.8

The satellite passes directly over two tracking 

stations 𝐴 and 𝐵, which are 69 miles apart. 

When the satellite is on one side of the two 

stations, the angles of elevation at 𝐴 and 𝐵 are 

measured to be 86.2° and 83.9° respectively.

How far is the satellite from station 𝐴 and how 

high is the satellite above the ground? Round 

answers to the nearest whole mile.

Answer: Satellite is 1716 miles from station 𝐴 and 1706 miles above the ground.

8Source: OpenStax, Precalculus, CC BY-NC-SA 4.0
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Chapter 6 Laws of Sines and Cosines 6.2 Law of Cosines

 6.2 Law of Cosines

Theorem 6.2.1 (Law of Cosines)

Given a triangle △ 𝐴𝐵𝐶 with sides of lengths 𝑎, 𝑏, and 𝑐 opposite to angles 𝐴, 𝐵, and 𝐶, 
respectively, then

𝑎2 = 𝑏2 + 𝑐2 − 2𝑏𝑐 cos 𝐴
𝑏2 = 𝑎2 + 𝑐2 − 2𝑎𝑐 cos 𝐵
𝑐2 = 𝑎2 + 𝑏2 − 2𝑎𝑏 cos 𝐶

or

cos 𝐴 = 𝑏2 + 𝑐2 − 𝑎2

2𝑏𝑐

cos 𝐵 = 𝑎2 + 𝑐2 − 𝑏2

2𝑎𝑐

cos 𝐶 = 𝑎2 + 𝑏2 − 𝑐2

2𝑎𝑏
.

♡

Proof.  We will only prove the first formula. The other two formulas can be proved similarly.

Consider the figure on the right. By the Pythagorean Theo
rem, we have

ℎ2 + 𝑥2 = 𝑏2 and ℎ2 + (𝑐 − 𝑥)2 = 𝑎2.
Subtracting the first equation from the second and simpli
fying gives

𝑎2 = 𝑏2 + 𝑐2 − 2𝑐𝑥.
From the definition of cosine function, we have

𝐴 𝐵

𝐶

𝐷

𝑎𝑏

𝑥 𝑐 − 𝑥

ℎ

𝑥 = 𝑏 cos 𝐴.
Substituting this into the equation above gives the desired formula

𝑎2 = 𝑏2 + 𝑐2 − 2𝑏𝑐 cos 𝐴. ⁠ □

Theorem 6.2.2 (Heron’s Formulas (Area of Triangle using SSS))

Given a triangle with the sides of lengths 𝑎, 𝑏, and 𝑐, the area is

Area = √𝑠(𝑠 − 𝑎)(𝑠 − 𝑏)(𝑠 − 𝑐),
where 𝑠 = 𝑎+𝑏+𝑐

2  is the semi-perimeter of the triangle, that is, one half of the perimeter 
of the triangle.

♡

Proof.  Recall that the area can be computed using the formula

𝑆 = 1
2
𝑎𝑏 sin 𝐶.

By the Law of Cosines, we have

sin2 𝐶 = 1 − cos2 𝐶 = 1 − (𝑎2 + 𝑏2 − 𝑐2

2𝑎𝑏
)

2

.

Simplifying (1
2𝑎𝑏 sin 𝐶)2

 and comparing with 𝑠(𝑠 − 𝑎)(𝑠 − 𝑏)(𝑠 − 𝑐) verifies Herions’ formula.

We leave the details to the reader as an exercise. ⁠ □
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Chapter 6 Laws of Sines and Cosines 6.2 Law of Cosines

Example 6.2.1.  Find the length of the unknown side of the triangle.

𝐵𝐴

𝐶

40°

17

10

Solution.  By the Law of cosine,

𝐵𝐶2 = 𝐴𝐶2 + 𝐴𝐵2 − 2𝐴𝐶 · 𝐴𝐵 cos 40°
= 172 + 102 − 2 · 17 · 10 · cos 40°
= − 340 cos 40°.

Thus,

𝐵𝐶 = √ − 340 cos 40° ≈ .

Example 6.2.2.  Find the angles in the triangle. Round your answers to the nearest tenth.

𝐴

𝐵

𝐶
25

20 18

Solution.  By the Law of Cosines,

cos 𝐵 = 252 + 202 − 182

2 · 25 · 20
= .

Thus,

𝐵 = cos−1( ) ≈ .

Similarly, we have

𝐶 = cos−1(202 + 182 − 252

2 · 20 · 18
) ≈ .

Finally,
𝐴 = 180° − 𝐵 − 𝐶 ≈ .

Rounding Issues

In the above example, 𝐴 can also be calculated using the Law of Cosines. Due to rounding, 
the answer may differ slightly from the one obtained by subtracting 𝐵 and 𝐶 from 180°.
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Chapter 6 Laws of Sines and Cosines 6.2 Law of Cosines

Example 6.2.3.  To find the distance between two locations 𝐴 and 𝐵 across a small lake, 
a surveyor has taken the measurements shown in the figure below. Find the distance 
across the lake using this information. Round your answers to the nearest tenth.

𝐴

𝐵

𝐶

1800 ft

2000 ft

52°

Solution.  By the Law of Cosines,

𝐴𝐵2 = 18002 + 20002 − 2 · 1800 · 2000 · cos 52° ft2

= − cos 52° ft2.
Thus,

𝐴𝐵 = √ − cos 52° ≈ ft.

Example 6.2.4.  Find the area of the triangle in the figure below using Heron’s formula.

15

8 10

Solution.  The semi-perimeter of the triangle is

𝑠 = 15 + 8 + 10
2

= .

By Heron’s formula, the area of the triangle is

𝑆 = √𝑠(𝑠 − 15)(𝑠 − 8)(𝑠 − 10)

= √ · · ·

= √

≈ .
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Chapter 6 Laws of Sines and Cosines Exercises

Exercises

🖊️ Exercise 6.2.1.  Find the unknown side and angles of the triangle.

65°

15

10

𝐴 𝐵

𝐶

Answer: 𝐵𝐶 = 14.08, ∠𝐵 = 40.1°, ∠𝐶 = 74.9°.

🖊️ Exercise 6.2.2.  Find the angles in the triangle. Round your answers to the nearest tenth.

13

11

12

𝐴

𝐵

𝐶

Answer: 𝐴 ≈ 59.3°, 𝐵 ≈ 68.7°, 𝐶 ≈ 52°.
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Chapter 6 Laws of Sines and Cosines Exercises

🖊️ Exercise 6.2.3.  To find the distance across a small lake, a surveyor has taken the measurements 

shown in the figure below. Find the distance across the lake using this information. Round your 

answers to the nearest tenth.

𝐴

𝐵

𝐶

2.1 km

2.9 km

47°

Answer: The distance across the lake is approximately 2.1 km.
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Chapter 7 Conic Sections

 7.1 Parabolas

Definition 7.1.1 (Parabolas with Horizontal or Vertical Axis of Symmetry)

A parabola is the set of points 𝑃  in a plane such that the distance from 𝑃  to a fixed point 
𝐹  (the focus) equals its distance to a fixed line 𝑙 (the directrix).

The axis of symmetry is the line through the focus, perpendicular to the directrix. The 
vertex is the point where the parabola meets this axis of symmetry. The vertex lies 
midway between the focus and the directrix and is the point on the parabola that is 
closest to the directrix.

The latus rectum is the line segment through the focus, perpendicular to the axis of 
symmetry, with endpoints on the parabola. Its length is called the focal diameter.

Denote by 𝑝 the signed distance along the axis of symmetry from the vertex to the focus 
(or equivalently to the directrix). Then the focal diameter equals to |4𝑝|.

A parabola with a vertical or horizontal axis of symmetry jas the standard form equation 
as follows:

Vertical Axis of Symmetry

(𝑥 − ℎ)2 = 4𝑝(𝑦 − 𝑘)
Horizontal Axis of Symmetry

4𝑝(𝑥 − ℎ) = (𝑦 − 𝑘)2

Focus
(ℎ, 𝑘 + 𝑝)

Vertex (ℎ, 𝑘)

Latus Rectum
4|𝑝|

Directrix
𝑙 : 𝑥 = 𝑘 − 𝑝

Axis of
Symmetry

𝑥 = ℎ

𝐹
𝑃

Focus
(ℎ + 𝑝, 𝑘) Vertex

(ℎ, 𝑘)

Latus Rectum
4|𝑝|

Directrix
𝑙 : 𝑥 = ℎ − 𝑝

Axis of
Symmetry

𝑥 = ℎ

𝐹

𝑃

If 𝑝 > 0 the parabola opens upward or to the right, and if 𝑝 < 0 it opens downward or to 
the left.

The focus always lies on the concave side of the parabola while the directrix lies on the 
opposite side of the parabola.

♣︎

Conic sections are a broad and fascinating topic. In this chapter, we focus on their basic definitions and 
standard forms. For more details, see the https://en.wikipedia.org/wiki/Conic_section.
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Chapter 7 Conic Sections 7.1 Parabolas

Example 7.1.1.  Find an equation of the parabola with the vertex 𝑉 (0, 1) and focus 𝐹(2, 1), 
and sketch the graph.

Solution.  Since the vertex and the focus have the same 𝑦-coordinate, the axis of symmetry 
is . The distance from the vertex to the focus is 2 − 0 = 2, so 𝑝 = .

Using the standard form for a parabola with a 
horizontal axis of symmetry, we have 4𝑝(𝑥 − ℎ) =
(𝑦 − 𝑘)2, where (ℎ, 𝑘) = (0, 1). Thus, an equation of 
the parabola is

16 = ( )2.
To sketch the graph, we plot the vertex at (0, 1), the 
focus at (2, 1), the directrix 𝑥 = −2, and the latus 
rectum with endpoints at (2, 5) and (2, −3), then 
sketch the parabola through the vertex and the 
endpoints of the latus rectum.

−3 −2 −1 1 2 3 4 5 𝑥

−2

−1

1

2

3

4

5

6
𝑦

0

Example 7.1.2.  Find the focus, directrix, and focal diameter of the parabola 𝑦 = 1
2𝑥2.

Solution.  Rewriting the equation in standard form, we have

𝑥2 = 4( )𝑦.

Thus, the vertex is at  and 𝑝 = .

Therefore, the focus is at , the directrix is the line 𝑦 = . The focal 
diameter is double the distance between the focus and the directrix and quadruple the 
distance from the vertex to the focus or the directrix, that is

|4𝑝| = 1
2
.

Example 7.1.3.  Find an equation of the parabola with the focus (1, 2) and the directrix 
𝑦 = −2.

Solution.  The vertex is the midpoint between the focus and the directrix, which is at
(1, ).

The distance from the vertex to the focus is 2 − 0 = 2, so
𝑝 = .

Using the standard form for a parabola with a vertical axis of symmetry, we have

(𝑥 − ℎ)2 = 4𝑝(𝑦 − 𝑘),
where (ℎ, 𝑘) = (1, 0). Thus, an equation of the parabola is

( )2 = 8 .
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Chapter 7 Conic Sections 7.1 Parabolas

Example 7.1.4.  A searchlight has a parabolic reflector that forms a “bowl,” which is 12 
in. wide from rim to rim and 8 in. deep. If the filament of the light bulb is located at the 
focus, how far is the focus from the bottom of the reflector?

Solution. Let the vertex of the parabola be at the origin (0, 0), and let the 𝑦-axis be the axis 
of symmetry. Since the reflector is 12 in. wide from rim to rim, and 8 in. deep, the points 
(6, 8) lie on the parabola. Because a parabola with a vertical axis of symmetry and with 
vertex at the origin, the standard form equation of the parabola is

𝑥2 = 4𝑝𝑦.
Substituting the point (6, −8) into the equation, 
we have

36 = 4𝑝(−8)

𝑝 = .

Thus, the focus is at (0, ). Therefore, 
the focus is  in. from the bottom of the 
reflector.

𝑥

𝑦

f

8 in.

12 in.

6 in.

Example 7.1.5.  Find the vertex, focus, and directrix for the following parabola 3𝑥 − 5 =
𝑦2 − 4𝑦.

Solution.  Rewriting the equation in standard form by completing the square for 𝑦, we 
have

𝑦2 − 4𝑦 + 4 = 3𝑥 − 5 +

(𝑦 − 2)2 = 4( )(𝑥 − ).

Thus, the vertex is at  and 𝑝 = .

Therefore, the focus is at , and the directrix is the line 𝑥 = .
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Chapter 7 Conic Sections Exercises

Exercises

🖊️ Exercise 7.1.1.  Find the vertex, focus, and directrix of the parabola.

1) 𝑥2 = −8(𝑦 − 1). 2) (𝑦 + 1)2 = 12(𝑥 − 2). 3) 𝑥2 + 2𝑥 + 4𝑦 = 3.

Answer: 1)
Vertex: (0, 1); Focus: (0, −1); Di
rectrix: 𝑦 = 3.

2)
Vertex: (2, −1); Focus: (5, −1); 
Directrix: 𝑥 = −1.

3)
Vertex: (−1, −1); Focus: (−1, 0); 
Directrix: 𝑦 = 2.

🖊️ Exercise 7.1.2.  Find an equation for the conic section with the given properties.

1) The parabola with vertex at (1, 0) and focus (1, 5).

2) The parabola with vertex at (2, 1) and the directrix 𝑥 = −2.

Answer: 1) (𝑥 − 1)2 = 20(𝑦 − 0). 2) (𝑦 − 1)2 = 8(𝑥 − 2).
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Chapter 7 Conic Sections Exercises

🖊️ Exercise 7.1.3.  Find the standard form equation for the parabola whose graph is given below.

−2 −1 1 2 𝑥

−1

1

2

3
𝑦

0

focus

Answer: 𝑥2 = 2𝑦.

189 / 224 PreCalculus Workbook

https://creativecommons.org/licenses/by-nc-sa/4.0/


Chapter 7 Conic Sections 7.2 Ellipses

 7.2 Ellipses

Definition 7.2.1 (Ellipses)

An ellipse is the set of points 𝑃  in the plane such that the sum of distances from 𝑃  to 
two fixed points 𝐹1 and 𝐹2, called the foci (plural of focus), is a constant 2𝑎. The midpoint 
between the foci is called the center of the ellipse. The distance from the center to each 
focus is denoted by 𝑐.

The major axis is the longest diameter of the ellipse, and the minor axis is the shortest 
diameter of the ellipse. The major axis passes through both foci, while the minor axis is 
perpendicular to the major axis at the center. The lengths of the major axis is 2𝑎 and the 
minor axis is 2𝑏 where 𝑏 =

√
𝑎2 − 𝑐2, or equivalently

𝑎2 = 𝑏2 + 𝑐2.
The intersections of the ellipse and the major axis are called the vertices, and the inter
sections of the ellipse and the minor axis are called the co-vertices.

The center is also the midpoint of the vertices, or the co-vertices.

An ellipse with horizontal or vertical major axis has a standard form equation as follows.

Horizontal Major Axis

(𝑥 − ℎ)2

𝑎2 + (𝑦 − 𝑘)2

𝑏2 = 1

Vertical Major Axis

(𝑦 − 𝑘)2

𝑎2 + (𝑥 − ℎ)2

𝑏2 = 1

Focus
(ℎ − 𝑐, 𝑘)

Focus
(ℎ + 𝑐, 𝑘)

Vertex
(ℎ − 𝑎, 𝑘)

Vertex
(ℎ + 𝑎, 𝑘)

Co-vertex
(ℎ, 𝑘 − 𝑏)

Co-vertex
(ℎ, 𝑘 + 𝑏)

Major
Axis

Minor
Axis

Center
(ℎ, 𝑘)

𝑎

𝑐

𝑏

Focus
(ℎ, 𝑘 − 𝑐)

Focus
(ℎ, 𝑘 + 𝑐)

Vertex
(ℎ, 𝑘 − 𝑎)

Vertex
(ℎ, 𝑘 + 𝑎)

Co-vertex
(ℎ − 𝑏, 𝑘)

Co-vertex
(ℎ + 𝑏, 𝑘)

Minor
Axis

Major
Axis

Center
(ℎ, 𝑘)

The distance 𝑐 from each focus to the center is called the linear eccentricity.

The eccentricity 𝑒 of an ellipse is

𝑒 = linear eccentricity
semi major axis

= 𝑐
𝑎
,

which shows how much the ellipse differs from a circle, with 0 ≤ 𝑒 < 1. The closer 𝑒 is to 
0, the more the ellipse looks like a circle.

♣︎
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Chapter 7 Conic Sections 7.2 Ellipses

Example 7.2.1.  An ellipse has the equation 𝑥2

9 + 𝑦2

4 = 1. Find the foci, the vertices, and 
the lengths of the major and minor axes. Sketch the graph.

Solution.  The given equation is in standard form with

ℎ = 0, 𝑘 = 0, 𝑎2 = 9, and 𝑏2 = 4.
Thus, the center is at (0, 0), the vertices are at (±3, 0), and the co-vertices are at (0, ±2).

The length of the major axis is
2𝑎 = ,

and the length of the minor axis is
2𝑏 = .

To find the foci, we use the relationship 
𝑎2 = 𝑏2 + 𝑐2 to find 𝑐:

9 = 4 + 𝑐2

𝑐2 =
𝑐 = .

Therefore, the foci are at (± , 0).

To sketch the graph, we plot the center, 
vertices, and co-vertices, and then draw a 
smooth curve through these points to form 
the ellipse.

−4 −3 −2 −1 1 2 3 4 𝑥

−3

−2

−1

1

2

3
𝑦

0

Latus Rectum and Directrix of an Ellipse

The latus rectum of an ellipse is a line segment perpendicular to the major axis that 
passes through a focus and has endpoints on the ellipse. The length is 2𝑏2

𝑎 .

For an ellipse centered at (ℎ, 𝑘), the endpoints through the foci are

• (ℎ ± 𝑐, 𝑘 ± (𝑏2

𝑎
)) if the major axis is horizontal, and

• (ℎ ± (𝑏2

𝑎
), 𝑘 ± 𝑐) if the major axis is vertical.

Plotting these endpoints along with the center, vertices, and foci gives a more accurate 
sketch of the ellipse.

To have a more accurate sketch of an ellipse, we can plot the endpoints of the latus rectum 
in addition to the center, vertices, and foci.

An ellipse can also be defined as the set of points where the ratio of the distance to a 
focus and the distance to its corresponding directrix is constant—the eccentricity 𝑒. The 
directrices are two lines perpendicular to the major axis, located at a distance 𝑎

2

𝑐  from the 
center.
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Chapter 7 Conic Sections 7.2 Ellipses

Example 7.2.2.  Find the foci of the ellipse 16𝑥2 + 9(𝑦 − 2)2 = 144.

Solution.  Rewriting the equation in standard form, we have

(𝑥 − 0)2

9
+ (𝑦 − 2)2

16
= 1.

Thus, the center is at (0, 2),
𝑎2 = , and 𝑏2 = 9.

To find the foci, we use the relationship 𝑎2 = 𝑏2 + 𝑐2 to find 𝑐:

16 = 9 + 𝑐2

𝑐2 =
𝑐 = .

Since 𝑎2 > 𝑏2, the major axis is vertical. The foci have the same 𝑥-coordinate as the center, 
and their 𝑦-coordinates are found by adding and subtracting 𝑐 from the 𝑦-coordinate of 
the center. Therefore, the foci are at

( , 2 ± ).

Example 7.2.3.  Find an equation of the ellipse with the vertices (±4, 1) and the foci (±2, 1).

Solution.  Since the vertices and foci are on the same vertical line 𝑦 = 1, the major axis of 
the ellipse is vertical and hence the equation in the standard form is

(𝑥 − ℎ)2

𝑏2 + (𝑦 − 𝑘)2

𝑎2 = 1.

Here (ℎ, 𝑘) is the center which is also the midpoint of the vertices or foci and given by

(ℎ, 𝑘) = (4 + (−4)
2

, 1 + 1
2

) = (0, 1).

From the vertices, we have the length of the semi-major axis, which is the half distance 
between vertices, is

𝑎 = .
From the foci, we have the distance from the center to each focus, which is the linear 
eccentricity, is

𝑐 = .
Using the relationship 𝑎2 = 𝑏2 + 𝑐2, we can find 𝑏2:

16 = 𝑏2 + 4
𝑏2 = .

Thus, an equation of the ellipse is

𝑥2
+ ( )2

16
= 1.
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Chapter 7 Conic Sections 7.2 Ellipses

Example 7.2.4.  Find the equation of the ellipse with foci (0, ±8) and the eccentricity 𝑒 = 4
5 .

Solution.  Since the foci have the same 𝑥-coordinate, the major axis of the ellipse is vertical 
and hence the equation in the standard form is

(𝑥 − ℎ)2

𝑏2 + (𝑦 − 𝑘)2

𝑎2 = 1.

Here (ℎ, 𝑘) is the center which is also the midpoint of the foci and given by

(ℎ, 𝑘) = (0 + 0
2

, 8 + (−8)
2

) = (0, 0).

From the foci, we have the distance from the center to each focus, which is the linear 
eccentricity, is 𝑐 = .

Using the eccentricity, we can find 𝑎:

𝑒 = 𝑐
𝑎

4
5

= 8
𝑎

𝑎 = .
Using the relationship 𝑎2 = 𝑏2 + 𝑐2, we can find 𝑏2:

64 = 𝑏2 + 64
25

𝑏2 = .

Thus, an equation of the ellipse is 
𝑥2

+ 𝑦2
= 1.
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Chapter 7 Conic Sections Exercises

Exercises

🖊️ Exercise 7.2.1.  An equation of an ellipse is given. Find the center, vertices, and foci of the ellipse, 

and the lengths of the major and minor axes.

1) 𝑥2

9 + 𝑦2

25 = 1. 2) (𝑥−1)2

25 + (𝑦+1)2

9 = 1. 3) 9𝑥2 + 18𝑥 + 25𝑦2 = −8.

Answer:

1) Center: (0, 0); Vertices: (0, ±5); Foci: (0, ±4); Major axis length: 10; Minor axis length: 6.

2) Center: (1, −1); Vertices: (6, −1), (4, −1); Foci: (5, −1), (−3, −1); Major axis length: 10; Minor axis length: 6.

3) Center: (−1, 0); Vertices: (−2
3 , 0), (−4

3 , 0); Foci: (−11
15 , 0), (−19

15 , 0); Major axis length: 2
3 ; Minor axis length: 2

5 .
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Chapter 7 Conic Sections Exercises

🖊️ Exercise 7.2.2.  Find an equation for the ellipse with each set of given properties.

1) vertices (±2, 0) and foci (±1, 0). 2) foci (1, 4) and (1, 0), and the eccentricity 𝑒 = 4
5 .

Answer: 1) 𝑥2

4 + 𝑦2

3 = 1. 2)
(𝑥−1)2

25 + (𝑦−2)2

9 = 1.

🖊️ Exercise 7.2.3.  Find an question for the ellipse with the given graph.

−7 −6 −5 −4 −3 −2 −1 1 2 3 4 5 6 7 𝑥

−4

−3

−2

−1

1

2

3

4

𝑦

0

Answer: 𝑥2

36 + 𝑦2

9 = 1.
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Chapter 7 Conic Sections 7.3 Hyperbola

 7.3 Hyperbola

Definition 7.3.1 (Hyperbolas)

A hyperbola is the set of points 𝑃  in the plane such that the absolute difference of the 
distances from 𝑃  to two fixed points 𝐹1 and 𝐹2, called the foci, is a constant 2𝑎.

The midpoint of foci is the center of the hyperbola. The distance from each focus to the 
center is denoted by 𝑐.

A hyperbola has two separate curves called branches. Each branch approaches two lines 
through the center called asymptotes.

The transverse axis is the shortest line segment connecting the two branches of the 
hyperbola. The endpoints of the transverse axis are called the vertices of the hyperbola. 
The transverse axis passes through the foci and has the length 2𝑎.

The rectangle whose diagonals lie along the asymptotes and with a side passing through 
a vertex is called the central box.

The line segment through the center, perpendicular to the transverse axis, with end
points on the central box is the conjugate axis. Its endpoints are the co-vertices.

The standard form of a hyperbola with a horizontal or vertical transverse axis is one of 
the following:

Horizontal Transverse Axis

(𝑥 − ℎ)2

𝑎2 − (𝑦 − 𝑘)2

𝑏2 = 1

Vertical Transverse Axis

(𝑦 − 𝑘)2

𝑎2 − (𝑥 − ℎ)2

𝑏2 = 1

Central
box

Asymptote
𝑦 = − 𝑏

𝑎(𝑥 − ℎ) + 𝑘
Asymptote

𝑦 = 𝑏
𝑎(𝑥 − ℎ) + 𝑘

Center
(ℎ, 𝑘)

Vertex
(ℎ − 𝑎, 𝑘)

Vertex
(ℎ + 𝑎, 𝑘)

Co-vertex
(ℎ, 𝑘 + 𝑏)

Co-vertex
(ℎ, 𝑘 − 𝑏)

focus
(ℎ − 𝑐, 𝑘)

focus
(ℎ + 𝑐, 𝑘)

Transverse
axis

Conjugate
axis

Central
box

Asymptote
𝑦 = 𝑎

𝑏 (𝑥 − ℎ) + 𝑘
Asymptote

𝑦 = −𝑎
𝑏 (𝑥 − ℎ) + 𝑘

Center
(ℎ, 𝑘)

Vertex
(ℎ, 𝑘 − 𝑎)

Vertex
(ℎ, 𝑘 + 𝑎)

Co-vertex
(ℎ − 𝑏, 𝑘)

Co-vertex
(ℎ + 𝑏, 𝑘)

focus
(ℎ, 𝑘 + 𝑐)

focus
(ℎ, 𝑘 − 𝑐)

Transverse
axis

Conjugate
axis

In the equations of standard form and figures above, 𝑏 is defined by 𝑏 =
√

𝑐2 − 𝑎2.
♣︎

Equations of Asymptotes

In standard form equation of a hyperbola, replacing 1 with 0 and solving for 𝑦 by factoring 
yields the equations of the asymptotes. Conversely, the product of the equations of the 
asymptotes is differ by a constant with an equation of the hyperbola.
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Chapter 7 Conic Sections 7.3 Hyperbola

Example 7.3.1.  A hyperbola has the equation 9𝑥2 − 16𝑦2 = 121. Find the vertices, foci, 
length of the transverse axis, and asymptotes. Sketch the graph.

Solution.  Rewriting the equation in standard form, we have

𝑥2

121
9

− 𝑦2

121
16

= 1.

Thus, the center is at (0, 0),
𝑎 = ,  and 𝑏 = .

The vertices are located 𝑎 units from the center along the transverse axis. Since the 
transverse axis is horizontal, the vertices are at

(± , 0).
To find the foci, we use the relationship 𝑐2 = 𝑎2 + 𝑏2 to find 𝑐:

𝑐 = √121
9

+ 121
16

= .

Since the transverse axis is horizontal, the foci are at
(± , 0).

The length of the transverse axis is 2𝑎 = .

The equations of the asymptotes are given by

𝑦 = ±(𝑏
𝑎
)𝑥 = ±( )𝑥.

To sketch the graph, we first plot the center, vertices, and foci. Then we draw the 
asymptotes as dashed lines through the center. Finally, we sketch the two branches of 
the hyperbola, approaching but never touching the asymptotes.

−8 −7 −6 −5 −4 −3 −2 −1 1 2 3 4 5 6 7 8 𝑥

−6

−5

−4

−3

−2

−1

1

2

3

4

5

6

𝑦

0
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Chapter 7 Conic Sections 7.3 Hyperbola

Latus Rectum and Directrix of a Hyperbola

The latus rectum of a hyperbola is a line segment perpendicular to the transverse axis 
that passes through a focus and has endpoints on the hyperbola. The length of the latus 
rectum is 2𝑏2

𝑎 .

For a hyperbola centered at (ℎ, 𝑘), the endpoints of the latus rectum through the foci are:

• (ℎ ± 𝑐, 𝑘 ± (𝑏2

𝑎
)) if the transverse axis is horizontal.

• (ℎ ± (𝑏2

𝑎
), 𝑘 ± 𝑐) if the transverse axis is vertical.

Plotting these endpoints along with the center, vertices, and foci gives a more accurate 
sketch of the hyperbola.

An ellipse can also be defined as the set of points where the ratio of the distance to a 
focus and the distance to its corresponding directrix is constant, the eccentricity 𝑒. The 
directrices of an ellipse are the two lines perpendicular to the transverse axis and located 
a distance of 𝑎2

𝑐  from the center.

Example 7.3.2.  Find the vertices, foci, length of the transverse axis, and asymptotes of 
the hyperbola 𝑥2 + 2𝑥 − 9𝑦2 + 10 = 0.

Solution.  Completing the square for 𝑥 and rewriting the equation in standard form gives

(𝑥2 + 2𝑥 + 1) − 9𝑦2 =

𝑦2 − (𝑥 + 1)2
= 1.

Thus, the center is at (−1, 0),
𝑎 = 1,  and 𝑏 = √ = .

The vertices are located 𝑎 units from the center along the transverse axis. Since the 
transverse axis is horizontal, the vertices are at

(−1 + , 0) = , and (−1 − , 0) = .
From the equation 𝑐2 = 𝑎2 + 𝑏2, we find

𝑐 = √10 + 10
9

= .

Since the transverse axis is horizontal, the foci are at
(−1 + , 0) = , and (−1 − , 0) = .

The length of the transverse axis is 2𝑎 =

The equations of the asymptotes are given by

𝑦 = ±(𝑏
𝑎
)(𝑥 − ℎ) + 𝑘 = ±( )(𝑥 + 1).
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Chapter 7 Conic Sections 7.3 Hyperbola

Example 7.3.3.  Find the equation of the hyperbola with vertices (±3, 1) and foci (±4, 1).

Solution.  The center is the midpoint of the foci:
(3, 1) + (−3, 1)

2
= (0, ).

The distance from the center to a vertex is
𝑎 = .

The distance from the center to a focus is
𝑐 = .

Using the relationship 𝑐2 = 𝑎2 + 𝑏2, we find 𝑏2:

𝑏2 = 𝑐2 − 𝑎2 = 16 − 9 = .
Since the foci and vertices are on the same horizontal lines 𝑦 = 1, the transverse axis is 
horizontal, the equation of the hyperbola is

𝑥2
− (𝑦 − 1)2

9
= 1.

Example 7.3.4.  Find an equation of the hyperbola with vertices (±2, 1) and asymptotes 
𝑦 = ±1

2𝑥 + 1.

Solution. (Using the center, 𝑎, and 𝑏).  The center is the midpoint of the vertices: (0, 1). The 
distance from the center to a vertex is 𝑎 = .

From the slope of the equations of the asymptotes, we have
𝑎
𝑐

= 1
2

𝑐 = .
Using the relationship 𝑏2 = 𝑐2 − 𝑎2, we find 𝑏2:

𝑏2 = (𝑎
2
)

2
= 4

4
= .

Since the vertices are on the horizontal line 𝑦 = 1, the transverse axis is horizontal. 
Therefore, the equation of the hyperbola is

𝑥2

4
− (𝑦 − 1)2

= 1.

Solution. (Using equations of asymptotes).  Since the asymptotes are given by (𝑦 − 1) +
±1

2𝑥 = 0, an equation of the hyperbola is of the form

((𝑦 − 1) + 1
2
𝑥)((𝑦 − 1) − 1

2
𝑥) = 𝑘

for some constant 𝑘¬ = 0. Since (2, 1) is a vertex, pluging this point into the equation gives

𝑘 = (1 − 1 + 1
2

· 2)(1 − 1 − 1
2

· 2) = .

Thus, an equation of the hyperbola is

𝑥2

4
− (𝑦 − 1)2 = 1.
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Exercises

🖊️ Exercise 7.3.1.  An equation of a hyperbola is given. Find the center, vertices, foci, and asymptotes 

of the hyperbola. Sketch the graph.

1) 𝑥2

9 − 𝑦2

25 = 1. 2) 𝑦2

9 − 𝑥2

25 = 1. 3) 25𝑥2 − 9𝑦2 − 4 = 0.

Answer:

1) Center: (0, 0); Vertices: (±3, 0); Foci: (±
√

34, 0); Asymptotes: 𝑦 = ±5
3𝑥.

2) Center: (0, 0); Vertices: (0, ±3); Foci: (0, ±
√

34); Asymptotes: 𝑦 = ±3
5𝑥.

3) Center: (0, 0); Vertices: (±2
5 , 0); Foci: (±2

√
34

15 , 0); Asymptotes: 𝑦 = ±3
5𝑥.
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🖊️ Exercise 7.3.2.  Find an equation for the conic section with the given properties.

1) The hyperbola with foci (0, ±3) and vertices (±2, 0).

2) The hyperbola with foci (±5, 1) and asymptotes 𝑦 = ±3
4 + 1.

Answer: 1) 𝑥2

4 − 𝑦2

5 = 1. 2)
𝑥2
16
25

− (𝑦−1)2

9
25

= 1.
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🖊️ Exercise 7.3.3.  Find an question for the conic section with the given graph.

−6 −5 −4 −3 −2 −1 1 2 3 4 5 6 𝑥

−9

−8

−7

−6

−5

−4

−3

−2

−1

1

2

3

4

5

6

7

8

9

𝑦

0

Answer: 𝑥2

9 − 𝑦2

36 = 1.
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Chapter 8 Sequences and Series

 8.1 Sequences

Definition 8.1.1 (Sequences)

A sequence is an ordered list of numbers or equivalently a function whose domain is 
the set of positive integers or right tail truncated set of integers. Each number in the 
sequence is called a term. Sequences can be finite or infinite. A sequence is often 
denoted by {𝑎𝑛}, where 𝑎𝑛 is called the 𝑛-th term or general term of the sequence and 
𝑛 is called the index of the sequence.

♣︎

Sequences as Functions

A sequence can be viewed as a function whose domain is the set of positive integers ℤ+ =
{1, 2, 3, ⋯} or a truncated or extended set of integers {𝑚, 𝑚 + 1, 𝑚 + 2, ⋯} for some integer 
𝑚. Thus, a sequence {𝑎𝑛} can be defined by a formula for its 𝑛-th term 𝑎𝑛 = 𝑓(𝑛) for some 
function 𝑓  defined on ℤ+ or {𝑚, 𝑚 + 1, 𝑚 + 2, ⋯}.

Example 8.1.1.  Find the first five terms and the 100-th term of the sequence defined by 
each formula.

1) 𝑎𝑛 = 2𝑛2 − 1 2) 𝑟𝑛 = (−1)𝑛

2𝑛

Solution.  To find a term in a sequence defined by a formula, we substitute the index of 
the term into the formula.

1) For 𝑎𝑛 = 2𝑛2 − 1, the first five terms are 𝑎1 = 1, 𝑎2 = 7, 𝑎3 = 17, 𝑎4 = 31, 𝑎5 = 49, and 
the 100-th term is 𝑎100 = 2 · 1002 − 1 = .

2) For 𝑟𝑛 = (−1)𝑛

2𝑛 , the first five terms are 𝑟1 = −1
2 , 𝑟2 = 1

4 , 𝑟3 = −1
8 , 𝑟4 = 1

16 , 𝑟5 = − 1
32 , and 

the 100-th term is 𝑟100 = 1
2100 .

Example 8.1.2.  Find the 𝑛-th term of a sequence whose first several terms are given. The 
ellipsis ⋯ indicates that the pattern continues.

1) 1
2 , 3

4 , 4
5 , 5

6 , ⋯ 2) −2, 4, −8, 16, ⋯

Solution.  To find the 𝑛-th term of a sequence from its first few terms, look for a pattern 
often by examining differences or ratios between terms.

1) Observe that the numerator of each term increases by 1 starting from 1, and the 
denominator also increases by 1 starting from 2. Thus, the 𝑛-th term is 𝑎𝑛 = 𝑛

𝑛+1 .

2) Observe that the absolute value of each term is a power of 2, and the sign alternates. 
Thus, the 𝑛-th term is 𝑎𝑛 = (−1)𝑛 · 2𝑛.
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Definition 8.1.2 (Recursive Sequences)

In some sequences, the 𝑛-th term may depend on some or all of the terms preceding it. 
Such a sequence is called recursive sequence.

♣︎

Example 8.1.3.  Find the first five terms of the sequence defined recursively by 𝑎1 = 1 and 
𝑎𝑛 = 3(𝑎𝑛−1 + 2).

Solution.  To find the first five terms of the sequence, we use the recursive formula step 
by step.
𝑎1 = 1, 𝑎2 = 3(𝑎1 + 2) = 3( + 2) = , 𝑎3 = 3(𝑎2 + 2) = 3(9 + 2) = ,

𝑎4 = 3(𝑎3 + 2) = 3( + 2) = , 𝑎5 = 3(𝑎4 + 2) = 3(105 + 2) = 321
Thus, the first five terms are 1, 9, 33, 105, and 321.

Example 8.1.4.  Find the first seven terms of the Fibonacci sequence defined recursively 
by 𝐹1 = 1, 𝐹2 = 1 and

𝐹𝑛 = 𝐹𝑛−1 + 𝐹𝑛−2.

Solution.  To equation for the 𝑛-th term shows that the 𝑛-term is the sum of previous two 
terms in the Fibonacci sequence. Thus, we have

𝐹1 = 1, 𝐹2 = 1, 𝐹3 = 𝐹2 + 𝐹1 = 1 + 1 = 2, 𝐹4 = 𝐹3 + 𝐹2 = 2 + 1 = 3,
𝐹5 = 𝐹4 + 𝐹3 = + = ,
𝐹6 = 𝐹5 + 𝐹4 = + = ,
𝐹7 = 𝐹6 + 𝐹5 = + = .

Therefore, the first seven terms of the Fibonacci sequence are 1, 1, 2, 3, 5, 8, and 13.

Definition 8.1.3 (Partial Sums)

For the sequence {𝑎𝑛}, the sum 𝑆𝑛 = 𝑎1 + 𝑎2 + ⋯ + 𝑎𝑛 for first 𝑛 terms is called the 𝑛-th 
partial sum. The sum of the entire sequence is called the sum of the sequence.

♣︎

Example 8.1.5.  Consider the sequence {𝑎𝑛} defined by 𝑎𝑛 = 1
𝑛 − 1

𝑛+1 . Find the partial 
sums 𝑆3 and the 𝑛-th partial sum 𝑆𝑛.

Solution.  To find the partial sums, we evaluate the sum of the first 𝑛-terms

𝑆3 = (1
1

− 1
2
) + (1

2
− 1

3
) + (1

3
− 1

4
)

= 1 + ((−1
2
) + 1

2
) + ((−1

3
) + 1

3
) − 1

4
= 1 − 1

4
= ,

Note that the terms cancel out in pairs except the first term 1 and the last term − 1
𝑛+1 . 

Thus, the 𝑛-th partial sum is

𝑆𝑛 = 𝑎1 + 𝑎2 + ⋯ + 𝑎𝑛 = 1 − 1
𝑛 + 1

= 𝑛
𝑛 + 1

.
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Definition 8.1.4 (Sigma Notation)

Given a sequence {𝑎𝑛} and integers 𝑝 < 𝑞, the sum 𝑎𝑝 + 𝑎𝑝+1 + ⋯ + 𝑎𝑞 is often denoted 
by the summation notation as follows:

∑
𝑞

𝑘=𝑝
𝑎𝑘

where the Greek letter sigma ∑ means to sum expressions up, 𝑘 is the index of 
summation, and 𝑞 is the upper limit of summation, 𝑝 is the lower limit of summation, 
and the 𝑘-th summand 𝑎𝑘 is the 𝑘-th term of the sequence.

♣︎

Example 8.1.6.  Find the sum.

1) ∑
5

𝑘=1
𝑘2 2) ∑

5

𝑗=3

1
𝑗

Solution.  From the definedion of summation notation, we have

∑
5

𝑘=1
𝑘2 = 12 + 22 + 32 + 42 + 52 =

and

∑
5

𝑗=3

1
𝑗

= 1
3

+ 1
4

+ 1
5

= .

Example 8.1.7.  Write each sum using sigma notation.

1) 13 + 23 + 43 + ⋯ + 73 2)
√

1 +
√

3 +
√

5 + ⋯ +
√

13

Solution.  To write the sums using sigma notation, we identify the pattern of the terms.

1) The terms are cubes of integers from 1 
to 7. Thus, the sum can be written as

∑
𝑘=

𝑘3.

2) The terms are square roots of odd inte
gers from 1 to 13. Thus, the sum can be 
written as

∑
𝑗=

√2𝑗 − 1.

Proposition 8.1.5 (Properties of Partial Sums)

Let {𝑎𝑛} and {𝑏𝑛} be two sequences.

1) ∑
𝑛

𝑘=1
(𝑐 ⋅ 𝑎𝑘 + 𝑑 ⋅ 𝑏𝑘) = 𝑐 ∑

𝑛

𝑘=1
𝑎𝑘 + 𝑑 ∑

𝑛

𝑘=1
𝑏𝑘 for any constants 𝑐 and 𝑑.

2) ∑
𝑛

𝑘=1
𝑎𝑘 = ∑

𝑚

𝑘=1
𝑎𝑘 + ∑

𝑛

𝑘=𝑚+1
𝑎𝑘 for any 1 < 𝑚 < 𝑛.

♠︎

Proof.  The proofs follow directly from the definitions of summation notation and partial 
sums, and rules of arithmetic. ⁠ □
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Exercises

🖊️ Exercise 8.1.1.  Find the first 5 terms of the sequence with the given 𝑛-th term.

1) 𝑎𝑛 = 𝑛2

𝑛+1 2) 𝑎𝑛 = (−1)𝑛 2𝑛

𝑛

Answer: 1) 1
2 , 4

3 , 9
4 , 16

5 , 25
6 . 2) −2, 2, −8

3 , 4, −32
5 .

🖊️ Exercise 8.1.2.  Find the first 5 terms of the recursive sequence.

1) 𝑎𝑛 = 𝑎𝑛−1 + 2𝑛 − 1, 𝑎1 = 1 2) 𝑎𝑛 = 𝑎𝑛−1 − 𝑎𝑛−2 , 𝑎1 = 1 and 𝑎2 = 2

Answer: 1) 1, 4, 9, 16, and 25. 2) 1, 2, −1, 3, and −4.
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🖊️ Exercise 8.1.3.  Find the partial sum 𝑆4 for the sequence.

1) {𝑘3} 2) { 1
𝑗+1}

Answer: 1) 𝑆4 = 100. 2) 𝑆4 = 77
60 .

🖊️ Exercise 8.1.4.  Write each sum using sigma notation.

1) 13 + 33 + 53 + ⋯ + 113 2) 3
√

1 + 3
√

2 + 3
√

3 + ⋯ + 3
√

10

Answer: 1) ∑
5

𝑘=0
(2𝑘 + 1)3. 2) ∑

10

𝑗=1

3
√

𝑗.
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🖊️ Exercise 8.1.5.  Find the sum.

1) ∑
10

𝑘=1
(𝑘 − 1)2 2) ∑

7

𝑖=2

2𝑖
2𝑖−1

3) ∑
3

𝑗=1

(−2)𝑗

𝑗+1

Answer: 1) 285. 2) 1229
105 . 3) −14

3 .
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 8.2 Arithmetic Sequences

Definition 8.2.1 (Arithmetic Sequences)

An arithmetic sequence is a linear function whose 𝑛-th term is 𝑎𝑛 = 𝑑(𝑛 − 𝑚) + 𝑎𝑚, 
where the slope 𝑑 is called the common difference.

If we denote the first 𝑎1 as 𝑎, then the 𝑛-th term of an arithmetic sequence is given by 
𝑎𝑛 = 𝑎 + (𝑛 − 1)𝑑, where 𝑑 = 𝑎𝑘+1 − 𝑎𝑘 for any positive integer 𝑘.

♣︎

Example 8.2.1.  Find 𝑎𝑛 for the arithmetic sequence
9, 4, −1, −6, −11, ⋯

Solution.  Because the sequence is arithmetic, its 𝑎𝑛 term can be written as 𝑎𝑛 = 𝑎1 +
𝑑(𝑛 − 1), where 𝑑 = 𝑎𝑘+1 − 𝑎𝑘 for any positive integer 𝑘. Here,

𝑎1 = 9  and 𝑑 = − = −5.
Thus, the 𝑛-th term is

𝑎𝑛 = 9 − 5(𝑛 − 1) = .

Example 8.2.2.  The 11-th term of an arithmetic sequence is 32, and the 19-th term is 72. 
Find the 100-th term.

Solution.  Let 𝑎𝑛 be the 𝑛-th term of the arithmetic sequence. Then, we have
𝑎11 = 𝑎 + 10𝑑 = 32
𝑎19 = 𝑎 + 18𝑑 = 72.

Solving the system of equations for 𝑎 and 𝑑, we get
𝑑 =   and 𝑎 = −18.

Therefore, the 𝑛-th term of the arithmetic sequence is
𝑎𝑛 = −18 + (𝑛 − 1) · 5 = .

Thus, the 100-th term is
𝑎100 = 5 · 100 − 23 = .

Theorem 8.2.2 (Partial Sums of Arithmetic Sequences)

For the arithmetic sequence 𝑎𝑛, the 𝑛-th partial sum is

𝑆𝑛 = ∑
𝑛

𝑘=1
𝑎𝑘 = 𝑛(𝑎1 + 𝑎𝑛

2
).

The sum of 𝑛 constant numbers is

∑
𝑛

𝑘=1
𝑐 = 𝑐𝑛,  where 𝑐 is a constant.

The sum of the first 𝑛 positive integers is

∑
𝑛

𝑘=1
𝑘 = 𝑛(𝑛 + 1)

2
.

♡
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Chapter 8 Sequences and Series 8.2 Arithmetic Sequences

Proof.  The formula ∑
𝑛

𝑘=1
𝑐 = 𝑐𝑛 is clear.

Note that
𝑎𝑘 + 𝑎𝑛−𝑘 = 𝑎1 + (𝑘 − 1)𝑑 + 𝑎1 + (𝑛 − 𝑘 − 1)𝑑 = 2𝑎1 + (𝑛 − 2)𝑑 = 𝑎1 + 𝑎𝑛,

for any 1 ≤ 𝑘 ≤ 𝑛. Thus,
2𝑆𝑛 = (𝑎1 + 𝑎𝑛) + (𝑎2 + 𝑎𝑛−1) + ⋯(𝑎𝑛 + 𝑎1) = 𝑛(𝑎1 + 𝑎𝑛).

Therefore,

𝑆𝑛 = 𝑛(𝑎1 + 𝑎𝑛
2

).

In particular, when 𝑑 = 1 and 𝑎1 = 1, we have 𝑎𝑛 = 𝑛, and

𝑆𝑛 = 𝑛(1 + 𝑛
2

) = 𝑛(𝑛 + 1)
2

.

⁠ □

Remark

The formula for the sum of the first 𝑛 positive integers can also be derived using induction 
or geometrically by arranging dots into a triangle (see for example https://artofproblem
solving.com/wiki/index.php/Proofs_without_words).

Example 8.2.3.  Find the sum of the first 50 odd numbers.

Solution.  The sequence of the first 50 odd numbers is an arithmetic sequence with the 
first term 𝑎1 = 1 and the common difference 𝑑 = 2. Thus, the 50-th term is

𝑎50 = 1 + (50 − 1) · 2 = .
Therefore, the sum of the first 50 odd numbers is

𝑆50 = 50(1 +
2

) = .

Example 8.2.4.  Find the following partial sum of an arithmetic sequence:
3 + 7 + 11 + 15 + ⋯ + 159.

Solution.  The sequence 3, 7, 11, 15, ⋯ is an arithmetic sequence with the first term 𝑎1 =
3 and the common difference 𝑑 = . To find the number of terms, we solve for 𝑛 in 
the equation

𝑎𝑛 = 3 + (𝑛 − 1) · 4 = 159.
Thus, we have

(𝑛 − 1) · 4 = 156
𝑛 − 1 = 39

𝑛 = 40.
Therefore, there are 40 terms in the sequence. Thus, the sum of the sequence is

𝑆40 = 40(3 + 159
2

) = .
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Chapter 8 Sequences and Series 8.2 Arithmetic Sequences

Example 8.2.5.  How many terms of the arithmetic sequence 5, 7, 9, ⋯ must be added to 
get 572?

Solution.  Because the sequence is arithmetic with 𝑎1 = 5 and 𝑑 = , we have
𝑎𝑛 = 5 + 2(𝑛 − 1) = .

The sum of the first 𝑛 terms is

𝑆𝑛 = 𝑛(𝑎1 + 𝑎𝑛
2

) = 𝑛(5 + (2𝑛 + 3)
2

) = .

To find how many terms must be added to get 572, we solve for 𝑛 in the equation
𝑛(𝑛 + 4) = 572.

Thus, we have

𝑛2 + 4𝑛 − 572 = 0
(𝑛 + 26)(𝑛 − ) = 0

𝑛 =  because 𝑛 > 0.
Therefore, 22 terms of the arithmetic sequence must be added to get 572.
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Exercises

🖊️ Exercise 8.2.1.  Determine whether the sequence is an arithmetic sequence or not and find the 

𝑛-th term of the sequence.

1) 1 −
√

2, 1 − 2
√

2, 1 − 3
√

2, 1 − 4
√

2, ⋯

2)
√

3, 3, 3
√

3, 9, ⋯

3) 1, −3
2 , 2, −5

2 , 3, ⋯

Answer: 1) Yes, 𝑎𝑛 = 1 − 𝑛
√

2. 2) No. 3) No.

🖊️ Exercise 8.2.2.  Find the partial sum of an arithmetic sequence.

1
3

+ 2
3

+ 1 + 4
3

+ 5
3

+ ⋯ + 33

Answer: 𝑆50 = 1650.
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🖊️ Exercise 8.2.3.  How many terms of the arithmetic sequence 3, 7, 11, ⋯ must be added to 

get 170?

Answer: 9 terms.
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 8.3 Geometric Sequences

Definition 8.3.1 (Geometric Sequence)

A geometric sequence is an exponential function whose 𝑛-th term is
𝑎𝑛 = 𝑎𝑚𝑟𝑛−𝑚,

where 𝑟 is the common ratio of the sequence.

If we denote the first term 𝑎1 as 𝑎, then the 𝑛-th term of a geometric sequence is given by

𝑎𝑛 = 𝑎𝑟𝑛−1.
♣︎

Example 8.3.1.  Find 𝑎𝑛 for the geometric sequence.

1) 2, −10, 50, −250, 1250, ⋯. 2) 1, 1
3 , 1

9 , 1
27 , 1

81 , ⋯.

Solution.  Because the sequence is geometric, its 𝑛-th term can be written as 𝑎𝑛 = 𝑎1𝑟𝑛−1, 
where 𝑟 = 𝑎𝑘+1

𝑎𝑘
 for any positive integer 𝑘.

1) Here,
𝑎1 = 2  and 𝑟 = = −5.

Thus, the 𝑛-th term is
𝑎𝑛 = 2(−5)𝑛−1 = .

2) Here,

𝑎1 = 1  and 𝑟 = = 1
3
.

Thus, the 𝑛-th term is

𝑎𝑛 = 1(1
3
)

𝑛−1
= .

Example 8.3.2.  The third term of a geometric sequence is 63
4 , and the sixth term is 1701

32 . 
Find the fifth term.

Solution.  Let 𝑎𝑛 be the 𝑛-th term of the geometric sequence. Then, we have

𝑎3 = 𝑎𝑟2 = 63
4

and 𝑎6 = 𝑎𝑟5 = 1701
32

.

Dividing the second equation by the first, we get

𝑟3 =
1701
32
63
4

𝑟 = 3√ = .

Note that 𝑎6 = 𝑎5𝑟. Thus, the fifth term is

𝑎5 = 𝑎6 · 1
𝑟

= 1701
32

· = 589
16

.
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Theorem 8.3.2 (Partial Sums of Geometric Sequences)

Given a geometric sequence whose 𝑛-th term is 𝑎𝑛 = 𝑎𝑟𝑛−1, the 𝑛-th partial sum is

𝑆𝑛 = ∑
𝑛

𝑘=1
𝑎𝑟𝑘−1 = 𝑎(1 − 𝑟𝑛)

1 − 𝑟
.

♡

Proof.  Consider the product
𝑆𝑛(1 − 𝑟) = 𝑆𝑛 − 𝑟𝑆𝑛.

We have

𝑆𝑛 = 𝑎 + 𝑎𝑟 + 𝑎𝑟2 + ⋯ + 𝑎𝑟𝑛−1,
and

𝑟𝑆𝑛 = 𝑎𝑟 + 𝑎𝑟2 + 𝑎𝑟3 + ⋯ + 𝑎𝑟𝑛.
Thus, we get

𝑆𝑛 − 𝑟𝑆𝑛 = 𝑎 − 𝑎𝑟𝑛 = 𝑎(1 − 𝑟𝑛).
Therefore,

𝑆𝑛 = 𝑎(1 − 𝑟𝑛)
1 − 𝑟

.

⁠ □

Relation between Arithmetic and Geometric Sequences

The logarithm of a geometric sequence forms an arithmetic sequence. If {𝑎𝑛} is geometric 
with 𝑎𝑛 = 𝑎𝑟𝑛−1, then {log(𝑎𝑛)} is arithmetic with

log(𝑎𝑛) = log(𝑎) + (𝑛 − 1) log(𝑟).
Conversely, the exponential of an arithmetic sequence forms a geometric sequence. If 
{𝑏𝑛} is arithmetic with 𝑏𝑛 = 𝑑(𝑛 − 1) + 𝑏, then {𝑟𝑏𝑛} is geometric with

𝑟𝑏𝑛 = 𝑟𝑏 · (𝑟𝑑)𝑛−1.

Example 8.3.3.  Find the following partial sum of a geometric sequence:
1 + 4 + 16 + ⋯ + 4096.

Solution.  The sequence 1, 4, 16, ⋯ is a geometric sequence with the first term 𝑎1 = 1 and 
the common ratio 𝑟 = . To find the number of terms, we solve for 𝑛 in the equation

𝑎𝑛 = 1 · 4𝑛−1 = 4096

4𝑛−1 = 4096

𝑛 − 1 = ln(4096)
ln(4)

=

𝑛 =
Thus, the sum of the sequence is

𝑆7 =
1(1 − 47)

1 − 4
= .
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Chapter 8 Sequences and Series 8.3 Geometric Sequences

Example 8.3.4.  Find the sum

∑
7

𝑘=1
(−2

3
)

𝑘−1
.

Solution.  Note that when

𝑎1 = (−2
3
)

0
= 1 and 𝑟 = −2

3
.

Therefore, using the formula for the partial sum of a geometric sequence, we have

𝑆7 =
1(1 − (−2

3)7)

1 − (−2
3)

= .

Example 8.3.5.  Find the sum

∑
5

𝑘=1
(−5

3
)

𝑘
.

Solution.  Note that when

𝑎1 = (−5
3
)

1
= −5

3
and 𝑟 = −5

3
.

Therefore, using the formula for the partial sum of a geometric sequence, we have

𝑆5 =
−5

3(1 − (−5
3)5)

1 − (−5
3)

= .

Definition 8.3.3 (Infinite Series)

An expression of the form

∑
∞

𝑘=1
𝑎𝑘 = 𝑎1 + 𝑎2 + 𝑎3 + 𝑎4 + ⋯

is called an infinite series.
♣︎

Definition 8.3.4 (Convergence and Divergence of Geometric Sequences)

An infinite series ∑
∞

𝑘=1
𝑎𝑘 is said to be convergent if the sequence of partial sums 𝑆𝑛 =

∑
𝑛

𝑘=1
𝑎𝑘 converges to a finite number. Otherwise, the series is said to be divergent.

Given a geometric series

∑
∞

𝑘=1
𝑎𝑟𝑘−1 = 𝑎 + 𝑎𝑟 + 𝑎𝑟2 + 𝑎𝑟3 + ⋯.

1) If |𝑟| < 1, then the series converges to 𝑆 = 𝑎
1 − 𝑟

.

2) If |𝑟| ≥ 1, the series diverges.
♣︎
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Example 8.3.6.  Determine whether the infinite geometric series is convergent or diver
gent. If it is convergent, find its sum.

1) 1 − 2
5 + 4

25 − 8
125 + ⋯ 2) ∑

∞

𝑘=1

1
4 ⋅ (3

2)𝑘
3) ∑

∞

𝑘=1
𝑝𝑞𝑘−1, |𝑞| < 1

Solution.  To determine whether the infinite geometric series is convergent or divergent, 
we identify the first term 𝑎 and the common ratio 𝑟 of each series.

1) Here,

𝑎 = 1 and 𝑟 = −2
5
.

Since |𝑟| < 1, the series converges to

𝑆 = 1
1 − (−2

5)
= .

2) Here,

𝑎 = 1
4

and 𝑟 = 3
2
.

Since |𝑟| < 1, the series diverges.

3) Here,
𝑎 = 𝑝 and 𝑟 = 𝑞.

Since |𝑞| < 1, the series converges to

𝑆 = 𝑝
1 − 𝑞

.
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Exercises

🖊️ Exercise 8.3.1.  Find the 𝑛-th term of the sequence and determine whether the sequence is a 

geometric sequence, or neither.

1)
√

2, 2, 2
√

2, 4, ⋯

2) −1, 4
3 , −5

3 , 2, ⋯

Answer: 1) 𝑎𝑛 =
√

2(
√

2)
𝑛−1

=
√

2𝑛
. Yes. 2) 𝑎𝑛 = (−1)𝑛(𝑛+2)

3 . No.

🖊️ Exercise 8.3.2.  Find the partial sum of a geometric sequence.

1) 1
2 + 1

4 + 1
8 + 1

16 + ⋯ + 1
1024 2) ∑

𝑛

𝑘=1
𝑎 · (−𝑏)𝑘−1

Answer: 1) 𝑆10 = 1023
1024 . 2) 𝑆𝑛 = 𝑎(1−(−𝑏)𝑛

1+𝑏 ).
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🖊️ Exercise 8.3.3.  Determine whether the infinite geometric series is convergent or divergent. If it 

is convergent, find its sum.

1) 1 − 5
2 + 25

4 − 125
8 + ⋯ 2) ∑

∞

𝑘=1
3 ⋅ (−1

2)𝑘 3) ∑
∞

𝑘=1

1
(𝑥2+2)𝑘−1

Answer: 1) Divergent. 2) Convergent, 𝑆 = 2. 3) Convergent, 𝑆 = 𝑥2+2
𝑥2+1 .
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 8.4 The Binomial Theorem

Theorem 8.4.1 (Binomial Theorem)

The binomial theorem states that for any positive integer 𝑛,

(𝑎 + 𝑏)𝑛 = ∑
𝑛

𝑘=0
(𝑛

𝑘
)𝑎𝑛−𝑘𝑏𝑘,

where (𝑛
𝑘 ) are binomial coefficients and defined as

(𝑛
𝑘

) = 𝑛!
𝑘!(𝑛 − 𝑘)!

= 𝑛 · (𝑛 − 1) · ⋯ · (𝑛 − 𝑘 + 1)
𝑘 · (𝑘 − 1) · ⋯ · 2 · 1

,

where 𝑛! = 𝑛 · (𝑛 − 1) · ⋯ · 2 · 1 is the factorial of 𝑛. In particular, ∑
𝑛

𝑘=0
(𝑛

𝑘 ) = 2𝑛.
♡

Proof. To get the term 𝑎𝑛−𝑘𝑏𝑘 in the expansion of (𝑎 + 𝑏)𝑛 corresponds to choosing 𝑘 factors 
of 𝑏 from 𝑛 factors of (𝑎 + 𝑏). The number of ways to choose 𝑘 factors of 𝑏 from 𝑛 factors 
can be counted first with an order, there are 𝑛(𝑛 − 1)⋯(𝑛 − 𝑘 + 1) ways, then dividing by 
the number of ways to arrange 𝑘 factors of 𝑏, which is 𝑘(𝑘 − 1)⋯2 · 1. Thus, the coefficient 
of 𝑎𝑛−𝑘𝑏𝑘 is (𝑛

𝑘 ). ⁠ □

Properties of Binomial Coefficients

The binomial coefficients have the following special values:

(𝑛
0
) = (𝑛

𝑛
) = 1, (𝑛

1
) = ( 𝑛

𝑛 − 1
) = 𝑛, (𝑛

2
) = ( 𝑛

𝑛 − 2
) = 𝑛(𝑛 − 1)

2
.

They also satisfy the following relations:

(𝑛
𝑟
) = ( 𝑛

𝑛 − 𝑟
) = (𝑛 − 1

𝑟 − 1
) + (𝑛 − 1

𝑟
),

which can be derived from the definition of binomial coefficients or by comparing coeffi
cients in the expansion of

∑
𝑛

𝑘=0
(𝑛

𝑘
)𝑎𝑛−𝑘𝑏𝑘 = (𝑎 + 𝑏)𝑛 = (𝑎 + 𝑏)(𝑎 + 𝑏)𝑛−1 = (𝑎 + 𝑏) ∑

𝑛−1

𝑘=0
((𝑛 − 1)

𝑘
)𝑎𝑛−1−𝑘𝑏𝑘.

The relations can be visualized using Pascal’s triangle, where the number in each position 
is the sum of the two numbers directly above it.

Pascal’s Triangle with 8 rows — The number in the 𝑛 row, 𝑘-th column is (𝑛
𝑘

)

1
1 1

1 2 1
1 3 3 1

1 4 6 4 1
1 5 10 10 5 1

1 6 15 20 15 6 1
1 7 21 35 35 21 7 1
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Example 8.4.1.  Calculate the binomial coefficients.

1) (7
3
) 2) (50

4
) 3) (100

97
)

Solution.  To calculate the binomial coefficients, we use the definition of binomial 
coefficients. When 𝑘 is greater than 𝑛

2 , we use the relation (𝑛
𝑘 ) = ( 𝑛

𝑛−𝑘) to simplify the 
calculation.

1) We have

(7
3
) = 7!

3!(7 − 3)!
= 7 · 6 · 5

3 · 2 · 1
= .

2) We have

(50
4

) = 50!
4!(50 − 4)!

= 50 · 49 · 48 · 47
4 · 3 · 2 · 1

= .

3) We have

(100
97

) = (100
3

) = 100!
3!(100 − 3)!

= 100 · 99 · 98
3 · 2 · 1

= .

Example 8.4.2.  Use the binomial theorem to expand (𝑥 + 𝑦)5.

Solution.  To expand (𝑥 + 𝑦)5, we use the binomial theorem:

(𝑥 + 𝑦)5 = ∑
5

𝑘=0
(5

𝑘
)𝑥5−𝑘𝑦𝑘.

As 𝑛 = 5 is not large, using the definition and properties of binomial coefficients directly 
or the Pascal’s triangle, we have

(5
0
) = 1, (5

1
) = 5, (5

2
) = , (5

3
) = , (5

4
) = , (5

5
) = .

Therefore, we get

(𝑥 + 𝑦)5 = 𝑥5 + 5𝑥4𝑦 + 10𝑥3𝑦2 + .

Example 8.4.3.  Use the binomial theorem to expand (
√

𝑥 − 1)4.

Solution.  When 𝑛 = 4, the binomial coefficients are

(4
0
) = 1, (4

1
) = 4, (4

2
) = , (4

3
) = 4, (4

4
) = 1.

Therefore, using the binomial theorem, we have

(
√

𝑥 − 1)4 = ∑
4

𝑘=0
(4

𝑘
)(

√
𝑥)4−𝑘(−1)𝑘

=
√

𝑥4 − 4
√

𝑥3 +

= .
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Example 8.4.4.  Find the term that contains 𝑥5 in the expansion of (2𝑥 − 1)10.

Solution.  To find the term that contains 𝑥5 in the expansion of (2𝑥 − 1)10, we use the 
binomial theorem:

(2𝑥 − 1)10 = ∑
10

𝑘=0
(10

𝑘
)(2𝑥)10−𝑘(−1)𝑘.

The term that contains 𝑥5 corresponds to 10 − 𝑘 = , or 𝑘 = 5. Thus, the term is

(10
5

)(2𝑥)5(−1)5.

Using the properties of binomial coefficients, we have

(10
5

) = 10!
5!(10 − 5)!

= 10 · 9 · 8 · 7 · 6
5 · 4 · 3 · 2 · 1

= .

Therefore, the term that contains 𝑥5 is

.

Example 8.4.5.  Find the term that contains 𝑥2 in the expansion of (𝑥3 − 1
𝑥)12

.

Solution.  To find the term that contains 𝑥2 in the expansion of (𝑥3 − 1
𝑥)12

, we use the 
binomial theorem:

(𝑥3 − 1
𝑥

)
12

= ∑
12

𝑘=0
(12

𝑘
)(𝑥3)12−𝑘(−1

𝑥
)

𝑘
= ∑

12

𝑘=0
(−1)𝑘𝑥 .

The term that contains 𝑥2 corresponds to 3(12 − 𝑘) − 𝑘 = , or 𝑘 = . Thus, the 
𝑥2 term is

( 12 )(−1)9𝑥2 = .
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Exercises

🖊️ Exercise 8.4.1.  Evaluate the expression.

1) (5
3) 2) (5

3) + (5
4) 3) ∑

5

𝑘=0
(5

𝑘)

Answer: 1) 10 2) 15 3) 32

🖊️ Exercise 8.4.2.  Expand the expression.

1) (2𝑥 + 𝑦)6 2) (𝑥 − 1
𝑥2 )5

Answer: 1) 64𝑥6 + 192𝑥5𝑦 + 240𝑥4𝑦2 + 160𝑥3𝑦3 + 60𝑥2𝑦4 + 12𝑥𝑦5 + 𝑦6. 2) 𝑥5 − 5𝑥2 + 10
𝑥 − 10

𝑥4 + 5
𝑥7 − 1

𝑥10 .
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🖊️ Exercise 8.4.3.  Find the term containing 𝑥6 in the expansion of (𝑥 + 3)10

Answer: 60480𝑥6.

🖊️ Exercise 8.4.4.  Find the term containing no 𝑥 in the expansion of (4𝑥 + 1
2𝑥)10

.

Answer: 8064.
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