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Preface

This book is designed to help students learn precalculus step by step and to
provide instructors with a ready-to-go resource for teaching. The concise, work-
along format uses an active-learning approach that builds problem-solving skills
and critical thinking. It covers all essential precalculus topics: functions, polyno-
mial and rational functions, exponential and logarithmic functions, trigonometry
(including identities, the laws of sines and cosines), conic sections, sequences, and
the binomial theorem.

The book works well for a one-semester precalculus course and can also serve as a
review before starting calculus and is suitable as a primary text or as a supplement
for active learning in class.

How Each Section is Organized

Key Definitions or Properties: Each topic begins with essential definitions and
properties that form the foundation for that follows.

Learn Through Examples: Most examples are partially completed and require
students to actively engage by filling in the missing steps.

Special Boxes: Different types of notes are boxed for easy identification.

« Important Notes (boxed with 5) highlight information you must remember.
« Informational Notes (boxed with () provide additional context or explanations.

« Tips (boxed with ©) offer helpful advice or strategies for solving problems.

Key Mathematical Statements: Theorems, propositions, and results are boxed
and highlighted for quick reference.

Exercises: Each section includes practice problems with answers for self-check-
ing. Students are encouraged to attempt problems independently first.

A Note About This Book

Even with careful preparation, there will still be errors. If you find any mistakes,
please let me know. Your comments, corrections, and suggestions will help make
future editions better.
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Chapter 1 Introduction to Functions

1.1 Basic Concepts

Definition 1.1.1 (Basic Concepts of Functions)

A relation is a set of ordered pairs. The set of first components of the ordered pairs is
called the domain, and the set of second components is called the range.

A function is a relation that assigns each element in the domain to a unique element in
the range.

A value in the domain is often represented by the letter z, called an independent
variable. A value in the range is often represented by the letter y, called a dependent
variable. If a function has z as the independent variable and y as the dependent variable,
we often say that y is a function of z.

NG

S

Example 1.1.1. Consider the relation
{(1,2),(2,4),(3,6),(4,8),(5,10)}.
1) Find the domain and the range.

2) Determine if this relation is a function.

Solution. The domain is

{1,2,3, , , }.
The range is
{2,4,6, , , }.
The relation _ a function because for each element in the domain has a uniquj

associated element in the range.
|_Example 1.1.2. Consider relation between products and prices in a grocery store.

1) Is price a function of product? If yes, what is the independent variable and what is the
dependent variable?

2) Is product a function of price? If yes, what is the independent variable and what is the
dependent variable?

Solution.

1) Because every product has a unique price, the price is a function of . The
independent variable is product and the dependent variable is

2) Because multiple products may have the same price, the product a function

of price? J
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Chapter 1 Introduction to Functions 1.1 Basic Concepts

Definition 1.1.2 (Function Notation)

A function is usually represented by a letter, such as f, and defined by an equation like
y = f(z). In this equation, f(z) is called function notation and is read as “f of " or “f
at z.” The notation f(z) represents the output of the function f for a given input z.

- /

Example 1.1.3. A function N = f(y) gives the number of police officers, N, in a town in
year y. What does f(2005) = 300 represent?

Solution. From the definition of function notation, the number 2005 is the input, the

number 300 is the . The equality means that in 2005, the number of police officersJ
is

Example 1.1.4. Consider the function f(z) = 22 + 3z — 4. Find the values of the following
expressions.

1 f(2) 2) f(a) 3) fla+h) 4) Llethl—j(a)
Solution.
1) f(2)=22+3(_  )—4=6.
2) fla)=__ *43a—4
3) fla+h)=( ) +3( )—d4=a2+  +h*+3a+  —A4
4)

fla+h)—fla) _ (a® + 2ah + h? + 3a + 3h — 4) — (a® + 3a — 4)

h h
B + h? + 3h
h

= 2a + ) J

anmple 1.1.5. Consider the function f(z) = ? — 2z. Find all z values such that f(x) = 3.

Solution. Replacing f(x) by 3 in the defining equation, we have the equation
z? — 2z = 3.

Solve the equation:

The values of z that satisfy the equation are 3 and . J

Example 1.1.6. Express the relationship defined by the function 2z —y—3=0 as a
function y = ().
Solution. To find i(z), solve the equation 2z —y — 3 = 0 for y:
y=_ -
Thus, the function is i(z) = — 3. J
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Chapter 1 Introduction to Functions 1.1 Basic Concepts

anmple 1.1.7. Consider the function f(z) defined by a graph below.

1) Find f(-1). 2) Find all z such that f(z) = 1.
Y Solution.

1) f(—1) is the y-coordinate of the point
on the graph where x = —1. From the
graph, we have

fE)=_

2) Tofind all z such that f(x) = 3, we look
for points on the graph where the y-
coordinate is 3. From the graph, we
see that f(z) =3 whenz=0and z =

1

-2 -1 0 1 2 3 4z
_1-- —

-

Definition 1.1.3 (One-to-One Function)

A function is a one-to-one function (also known as an bijective function) if every value
in its range corresponds to exactly one value in the domain.

N

Example 1.1.8. Is the function f(x) = 22 one-to-one?

Solution. Because different input values, for example z = 2and z = —2, produce the same
output value f(2) = f(—2) = , the function f one-to-one. J

Example 1.1.9. Is the area enclosed by a circle a function of its radius? If yes, is the
function one-to-one?

Solution. The area A of a circle is given by the formula A = 7r?, where r is the radius and
it is a nonnegative number. Since each radius r corresponds to exactly one area A, the
area a function of the radius. Moreover, the domain of the function is » > 0.

Since the radius must be nonnegative, solving r in terms of A gives a unique value of r =
for each area A. Thus, the function is one-to-one. J

<? Horizontal and Vertical Line Test

A graph is a function if very vertical line crosses the graph at most once. This method is
known as the vertical line test.

A function is an one-to-one if very horizontal line crosses the graph at most once. This
method is known as the horizontal line test.
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Chapter 1 Introduction to Functions

1.1 Basic Concepts

function?
Yy Yy
4 -
3 -
2 -
1 -
3 4 T 0
2 4+
-3 4+
—4 4
Solution.
() Yy

3 -3
—4+ —4
(a) (b)
From the vertical line test and horizontal line test:
(a) The graph a function. The function is
(b) The graph a function. The function is
(c) The graph a function. The function is

Example 1.1.10. Determine if the graph defines a function. If so, is it a one-to-one

4224

Xz 4 X
—4 +
(c)
Y
4 -
x 4 X
74 -
(c)
one-to-one.
one-to-one.

one-to-one. |
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Chapter 1 Introduction to Functions Exercises

Exercises
]

#/ Exercise 111 Consider the function f(z) =222+ x — 3. Find the values of the following
expressions.

D f(=1) 2) f(a) 3) f(a+h) 4) Lothifa)

Answer: 1) f(—1)=-2 2) f(a)=2a2+a—3 3) f(a+h)=2a>+4ah+2h*+a+h—3 4) LI@ 441 op 41

#’ Exercise 1.1.2. Consider the function f(z) = —z? — 4. Find all z values such that f(z) = 3.

Answer: The values of z that satisfy the equation are —1 and —3.
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Chapter 1 Introduction to Functions Exercises

#/ Exercise 1.1.3. Express the relationship defined by the function 3z — 2y — 6 = 0 as a function
y =l(z).

Answer: [(z) = 3z — 3.

# Exercise 1.1.4. Express the relationship defined by the equation 8z — 43 = 0 as a function y =
f(z). Is f a one-to-one function?

Answer: f(z) = v/8z. The function f is one-to-one.
#’ Exercise 1.15. Consider the function f(x) defined by a graph below.

1) Find f(1). 2) Find all z such that f(x) = 0.

Answer: 1) f(1) =3. 2) Thevalues of z such that f(z) = 0 are —1, 0, and 2.
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Chapter 1 Introduction to Functions 1.2 Domains and Ranges

1.2 Domains and Ranges

Definition 1.2.1 (Domain and Range)

The domain of a function f consists of possible input values z. Or equivalently, the
domain consists of all z values except those that will make the function is undefined.

The range of a function f consists of all possible output values y. Equivalently, the range
consists of y value such that equation y = f(z) has a solution z.

NG

-

Example 1.2.1. Find the domain of the function

z+1

fla) =3

Solution. The function is undefined when the denominator is equal to zero. So, we set
the denominator equal to zero and solve for z:

2—x=0
r = .
Therefore, the domain of the function is the set of all real numbers except z = . J

anmple 1.2.2. Find the domain of the function
f(@) =VT—=.

Solution. The square root /7 — x is real if the radicand 7 — z is nonnegative, that is 7 —
x > 0. Solve the inequality:

Therefore, the domain of the function consists of all real numbers z such that 2 < 7. J

< Set-builder and Interval Notation

Set-builder notation specifies a set of elements that satisfy a given condition. It takes
the form {z | statement about x}, read as “the set of all z such that the statement about
is true.”

Interval notation describes sets of real numbers between two endpoints, which may
or may not be included. Brackets or parentheses are placed around the endpoints,
separated by a comma: a square bracket indicates inclusion, and a parenthesis indicates
exclusion.

For example:
* [a,b] represents all real numbers from a to b, including both endpoints.
* (a,b] represents all real numbers from a to b, excluding a but including b.
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Chapter 1 Introduction to Functions 1.2 Domains and Ranges

Example 1.2.3. Find the domain of the function f(z) = 22, Write your answer in set-
builder notation and interval notation.

Solution. The function is undefined when the denominator is equal to zero or when the
radicand is negative. So the domain is determined by the two conditions:
x—1%#0 andz+2>0
x #+ and x >
Therefore, the domain of the function in set-builder notation is
{r|z>-2 and z#1}.
Since 1 > —2, the domain can be expressed in interval notation as

2 ju,__). ]

Example 1.2.4. Find the domain and range of the function f whose graph is shown in
the following figure.

Y Solution. Moving a vertical line from left
4+ toright, it crosses the graph starting from
51 x = —3 and up to z = 1.5. In interval nota-

tion, the domain is

[ ,1.5).
Moving a horizontal line from bottom to
top, it crosses the graph starting fromy =
—2 and up to y = 3. In interval notation,
the range is

Ll 2 ). 1

|_Example 1.2.5. Find the domain and range of the function
flz) =3Vz+2.

Solution. The square root v/z + 2 is real if the radicand z + 2 is nonnegative, that is = +
2 > 0. Solve the inequality:

z+2>0
T >

Therefore, the domain of the function in interval is
[_27_)'
When vz + 2 is real, it is nonnegative, that is vz +2 > 0. Thus,
f(z)=3Vz+2>3-0=0.

Therefore, the range of the function in interval notation is

o) ]
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Chapter 1 Introduction to Functions 1.2 Domains and Ranges

Definition 1.2.2 (Piecewise Function)

A piecewise function is a function defined by multiple sub-functions, each applying to
a certain sub-interval of the main function’s domain.

L]
-

Example 1.2.6. Consider the piecewise function
—2x—3if < -1

flz) =< —=a2 if -1<z<1
2z +4if 1<z
1) Sketch the graph 2) Find f(—4) 3) Find f(2)
Solution.
1) To sketch the graph, we plot each piece Y
of the function over its corresponding 4+
interval. 34

2) For f(—4), since —4 < —1, we use the
first piece of the function:
f(—4)_2('—4)—3_—8—3_ . > ;2\%6

1) For f(2), since 2 > 1, we use the third br
piece of the function:
f(2)=—22)+4=—-4+4=

r;(ample 1.2.7. Consider the piecewise function
2 —-3if z>-2

flz)y=4-2 if —4<z<-2
5—2zif rz<—4
1) Find f(f(—4)) 2) Find f(£{52)
Solution.
f4)=___

Next, we find f(—2). Since —2 > —2, we use the first piece of the function:
f(=2) = (-2 3=
5—

f(~5) =5 —2(~5) =
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Chapter 1 Introduction to Functions Exercises

Exercises
]

47 Exercise 1.2.1. Find the domain of the function.

1) f@)=142  2) f@)=+vB+2x 3) flz)=LE 4 fo) = 22,

Answer: 1) (—o00,3)U(3,00). 2) [-3,00). 3) [-1,1)U(1,00). 4) (—oo,—11)U(—11,4) U (4,00).

1) 2 2

# Exercise 1.2.2. Find the domain and range of each of the following functions. Write your answer
in sef-builder notation and inferval notation.

) flz) =25 2) f(z)=—-2vVz+4

Answer: 1) Domain: (—o0,2) U (2,00). Range: (—o0,0) U (0,00). 2) Domain: [—4, oo]. Range: (—oo, 0].
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Chapter 1 Introduction to Functions Exercises

#’ Exercise 1.2.3. Consider the piecewise function

—2z4+5if z< -2
flz)=<Rz2—-1 if —2<zx<2
3—2z if 2<«x.

1) Sketch the graph. 2) Find f(—4). 3) Find £(2). 4) Find f(f(3)). 5) Find f(£(0)+ 5).

Answer: 1)

2) f(=3)=5.3) f(2)=-1.4) f(f(3))=2.5) f(f(0)+5)=-3.
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Chapter 1 Introduction to Functions 1.3 Monotonicity and Extrema

1.3 Monotonicity and Extrema

Definition 1.3.1 (Rate of Changes)
The average rate of change of a function f over an interval [a, b] is defined as

f(b) — f(a)

b—a
By taking z = a and h = b — q, the average of rate of change is the same the difference
quotient of a function f which is defined as

Average Rate Of Change =

f(z+h) — f(=)
h ' R

Difference Quotient =

(7 Remark

Geometrically, the average rate of change is the slope of secant line passing through
(a, f(a)) and (b, f(b)).

When h goes to 0, the difference quotient represents the slope of the tangent line passing
through (z, f(x)).

Example 1.3.1. After picking up a friend who lives 10 miles away, Anna records her
distance from home over time. The values are shown in Table. Find her average speed

over the first 6 hours.

t (hours) o123 | 4 5 6 7
D(t) (miles) | 10| 55|90 [ 153 [ 214 | 240 | 292 | 300

Solution. Anna’s average speed over the first 6 hours is given by the average rate of
change of D(t) over the interval [0, 6]:

D(6) — D — 2
(6) 0) _ = 20 ~ miles per hour. J

6—0 6 6

F(ample 1.3.2. Find the average rate of change of f(z) = 2 — 1 over the interval [1,2].

Solution. The average rate of change of f over the interval [1,2] is
£2)— F1) _ - _
2—1 1 E— J

Example 1.3.3. Find the average rate of change of g(t) = t> + 3t + 1 on the interval [0, a].
The answer will be an expression involving a.

Solution. The average rate of change of g over the interval [0, a] is

90)—gl) _1—-(_ ) _—(a’+3a) _ . J

0—a —a —a
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Chapter 1 Introduction to Functions 1.3 Monotonicity and Extrema

Example 1.3.4. Find the difference quotient of f(z) = /= at z = a. Make sure that the
numerator is rationalized in your answer.

Solution. The difference quotientof fatz =a is

fath) —fla) _v_____—va
. |

h
To rationalize the numerator, we multiply the numerator and denominator by the conju-
gate of the numerator:

Vath—va vat+h+ya )—a _ h
h h(\/a+—h+\/6) h(\/(z—i-—h—i-\/E)

Definition 1.3.2 (Monotonicity and Extrema)

Decreasing
over
(_2= 2)

A function f is increasing over an interval (a,b) if
f(zy) > f(zq) for any z; < z, in (a,b). Equivalently,
f is increasing over (a,b) if the average rate of
change is positive over any subinterval (z,,z,) of
(a,b).

5
local max
4

1

A function £ is decreasing over an interval (a,b) if 5 —4 —3|-2 —10

f(zy) < f(zq) for any z; < z, in (a,b). Equivalently, Increasing
f is decreasing over (a,b) if the average rate of oy
change is negative over any subinterval (z,,z,) of T

(a,b). B
A function f has a local maximum f(c) if f(¢) > f(z) for any z near c. It has a local
minimum f(¢)if f(c) < f(z) for any z near c.

A function f has an absolute maximum f(c¢) if f(c¢) > f(z) for all z in the domain of f. It
has an absolute minimum f(¢) if f(¢) < f(z) for all z in the domain of f.

L]
- /

CJ Remark

The intervals of monotonicity are usually taken as as open intervals. However, some
textbooks may include the endpoints in the intervals.

The set of points near a point z = ¢ is often called a small neighborhood of a point z =
c. It is usually taken as an interval (¢ — §, ¢ + ¢) for some small positive number 6.

Theorem 1.3.3 (Local Extremum from Monotonicity)

A function f has a local maximum at z = ¢ if it switches from increasing to decreasing
near c.

It has a local minimum at z = ¢ if it switches from decreasing to increasing near c.
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Chapter 1 Introduction to Functions

1.3 Monotonicity and Extrema

Example 1.3.5. Find the interval of increasing and the interval of decreasing, and the
local maxima and local minima of the function f defined by the following graph.

Y
3+

Solution. The function goes up on the left of
z = —1 and on the right of z = 1. Therefore, it is
increasing over the intervals (—oo, —1) U

It goes down between z = —1 and z = 1. There-
fore, it is decreasing over the interval

The function switches from to

at x = —1. Therefore, it has a local maximum at
z = —1 with value f(—1) = 2.

It switches from to at z =1.

Therefore, it has a local minimum at z = 1 with

value f(1) = —2. J

Example 1.3.6. Find the local maximum, local minium, absolute maximum, and absolute
minimum of the function f defined by the following graph if they exist.

Y

4 +

3+

2 +

1+

CJ Remark

Solution. The function switches from decreasing
to increasing at z = —1. Therefore, it has a local
atz = —1 with value f(—1) =

Because (—1, f(—1)) is the lowest point on the

graph, the absolute is f(—1) = —2.
The function switches from to
at £ = 1. Therefore, it has a local atz =1

with value f(1) =

Because (-3, f(—3)) is the highest point on the
graph, the absolute is f(—3) = : J

Local extrema can also be found by using calculus techniques. In terms of average rate
of change, a local extremum occurs where the average rate of change approaches zero
as the interval shrinks to a point. It is a local maximum if the average rate of change
changes from positive to negative, and it is a local minimum if the average rate of change
changes from negative to positive.
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Chapter 1 Introduction to Functions Exercises

Exercises
]

#’ Exercise 1.3.1. The electrostatic force F, measured in newtons, between two charged particles

can be related to the distance between the particles d, in cenfimeters, by the formula F(d) = dl.

Find the average rate of change of force if the distance between the particles is increased from 2
cmto 6 cm.

Answer: —% N/cm”.

#’ Exercise 1.3.2. Find the average rate of change of f(z) = 22 + 2z — 8 on the interval [5, a).

Answer: a+ 7.

#/ Exercise 1.3.3. Find the difference quotient of f(x) = v/x at z = a. Make sure that the numerator
is rationalized in your answer.

. 1
Answer: Varhida
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Chapter 1 Introduction to Functions Exercises

#’ Exercise 1.3.4. Find the difference quotient of f(z) = 2% — 2z at z = a.

Answer: 2a — 2+ h.

# Exercise 1.3.5. Finding the absolute maximum and minimum of the function f defined by the
following graph.

Y

—4—3—2—110 1 2& 4 T
¥2--

-3 +

—4 +
Answer: The absolute maximum is f(1) = 3. The absolute minimum is f(3) = —2.

#/ Exercise 1.3.6. Find the inferval of increasing and the interval of decreasing, and the local
maxima and local minima of the function f using its graph.

—2 4
-3+
4+
-5+

Answer: Increasing: (—oo,—2) U (2,00); decreasing: (—2,2); local maximum: f(—2) =4; local minimum: f(2) = —4.
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Chapter 1 Introduction to Functions 1.4 Algebra of Functions

1.4 Algebra of Functions

Definition 1.4.1 (Algebra of Functions)

Let f and g be two functions with domains A and B respectively. We define the linear
combination, product, and quotient functions as follows.

* Linear combination: (af + bg)(z) = af(z) + bg(x) with the domain AN B.
* Product: (fg)(xz) = f(z)g(x) with the domain AN B.
* Quotient: ({)(z) = f(— with the domain {z in AN B | g(z) # 0}.

Example 1.4.1. Consider the functions f(z) =z — 1 and g(z) = 22 — 1.

1) Find the functions (g — f)(z) and (%)(z) in the simplest form.
2) Find their domains and write in interval notations.
Solution.

1) The function (g — f)(x) is given by
(9= (@) = g(z) — f(z) = ( )—( ) =1’ —z.
The function ( )(a:) is given by

g9 x:g(l'):xQ_l:(x—l)( ): i
(f>() f(z) xr—1 z—1 5 #+ 1.

2) Because the domains of f and g are both (—oco, ), the domain of f — g is
(—00,00) N (—00,00) = .
The domain of % is {z in (—o0,0) | f(z) # 0}. Solving f(z) =2z —1=0 yields z =
. In interval notation, the domain of% is
U (1, 00).

Definition 1.4.2 (Compositions of Functions)
Let f and g be two functions with domains A and B respectively. The composite function
f o g (also called the composition of f and g) is defined as
(feg)(x)= f(g9(x)) with the domain {z € B|g(z)in A}.
The notation f o g is read as “f composed with g” and means that f take g as its input.

N ‘/

CJ Remark

Note that in general, f o g is not the same as go f.

For example, let f(z) =z + 1, g(z) = 1, then (f o g)(z) = % + 1+ %H = (go f)(z).
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anmple 1.4.2. Consider the functions f(z) = vz — 2 and g(z) = 22 + 1.
1) Find and simplify the functions (f o g)(z) and (g o f)(z). Are they the same function?
2) Find the domains of f o g and g o f. Are they the same?
Solution.

1) The function (f o g)(z) is given by

(f o 9)(x) = flg(x)) = f( )=V (@2 +1)—2=/ :
The function (g o f)(z) is given by
(g0 )(x) = g(f(z)) = g )= (Va—2) +1= tl=z-1

Therefore, they are not the same function.
2) The domain of f is [2,0) and the domain of g is (—o0, ).

The domain of fogis {z in (—o0,00) | g(z) in [2,00)}. Solving the inequality g(z) > 2
yields
2 +1>2
x2>1
T > or x < —1.
Thus, the domain of f o g in interval notation is
(—o0,—1]U
The domain of go fis {z in [2,00) | f(z) in (—o0,00)}. Since f(z) is always in (—oo, 00),
the domain of g o f is the same as the domain of f, that is

anmple 1.4.3. Consider f(t) = t* — 4t and h(z) = v/z + 3. Evaluate
1) Iy 2) (h-f)(-1) 3) (foh)(—1) 4) (3f —h)(-1)
Solution. First find f(1), g(1), f(—1), and h(—1):
fy=02-4)=___

f(=1) = (-1)? —4(-1) = ,
h(—1)=vV—-1+3=
nIO_
g(1) —
2) (h- f)(—1) = h(f(—1)) = h( )=/ =
3) (foh)(—1) = f(h(—1)) = f( ) = ( )2 —4( ) = .
4) (f —h)(—1) = 3f(—1) — h(—1) = 3( ) — = . J
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Example 1.4.4. Using the graphs to evaluate the given functions.

1) (f+9)(1) Y
2) (f9)(1)
3) (L))
4) £2(1) - (%))
5) (g° f)(=3) ;
6) (f9)(0)) =
y=9(

Solution. First find the values of f(1), g(1), f(—3), f(0), and g(0) from the graph:
M=___, H=__, B)=__, fO=____ 90=___
Therefore,

1) (f+9)(1) = f(1) +9(1) =

2) (f9)(1) = f(1)g(1) =

) (3)0= 50 -

) 70 - (%) 0 = - 200

5) (g0 f)(=3) = g(f(=3)) = g( ) = :

6) (f°9)(0) = f(9(0)) = f( ) = : _J

Example 1.4.5. Consider the function h(z) = vz2 + 1. Find two non-identity functions f
and g so that h(z) = f(g(x)).

Solution. One possible answer is f(z) = /z and g(z) = . J
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Exercises
]

#’ Exercise 1.41. Consider the functions f(z) =22 —1 and g(z) = z + 1.
1) Find the functions f — g and %, and their domains.

2) Find (f2 — 3g)(1).

3) Find (2fg—30)(2).

Answer: 1) (f —g)(z) = 2> —z — 2, domain: (—o00,00); ({)(z) = z — 1, domain: (—o0,1) U (1,00). 2) —6. 3) 15.
#’ Exercise 1.4.2. Using the graphs fo evaluate the given functions.
D (f+9)(1) Y
2) (fg)(1) 1

Answer: 1) 2. 2) 1. 3) 1. 4) 1. 5 1. 6) —2. 7) %
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# Exercise 1.43. Consider the functions f(z) = - and g(z) = vz + 4
1) Find f o g and its domain. 2) Find (go f)(3).

Answer: 1) (fog)(x) domain: (—4,0) U (0,00). 2) /5.

=
#’ Exercise 1.4.4. Consider the function h(z) = v/2x — 1. Find two non-identity functions f and g
so that h(z) = f(g(z)).

Answer: f(z)= ¥z, g(z)=2z—1.
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1.5 Transformations

Definition 1.5.1 (Shifting)

Let f and g be two functions, and C and D be two real numbers.

If g(z) = f(x) + D, then the graph of g is obtained by shifting the graph of f by D units.
We call the transformation from f to g a vertical shift by D units.

If g(z) = f(x — C), then the graph of g is obtained by shifting the graph of f by C units.
We call the transformation from f to g a horizontal shift by C units.

L]
. /)

< Direction of Shift

The signs of C and D determine the direction of the shift. A positive sign indicates an
upward or rightward shift. A negative sign indicates a downward or leftward shift.

_Example 1.5.1. The point (9,—15) is on the graph of y = f(z).
1) Find a point on the graph of g(z) = f(z) + 5.

2) Find a point on the graph of g(z) = f(x + 5).

Solution.

1) Because f(9) = —15,

9O)=rf(___ )+5=__
Therefore, (9, ) is a point on the graph of g(z) = f(z) + 5.
2) Because f(9) = —15 and g(z) = f(z + 5), if we let = be the solution of z + 5 = 9, that is,
x = , then
g4)=f(___ +5)=f(9) =-15.
Therefore, (4,—15) is a point on the graph of g(z) = f(xz + 5) J

|_Example 1.5.2. Consider the functions f(z) = 22, g(z) = z?> — 1 and h(z) = 2% + 2.
1) Describe how to get the graph of g from the graph of f.
2) Describe how to get the graph of h from the graph of g.
3) Describe how to get the graph of f from the graph of A.

Solution. To determine the shift from f to g, write the function ¢ as a function of f and
find the units of shift.

1) Because g(x) = f(z) + 1, the graph g is a upward shift of the graph of f by 1 unit.
2) Because h(z) = g(z) + , the graph h is a upward shift of the graph g by 3 units.
3) Because f(z) = h(z) + (—2), the graph of fis a shift of the graph h by 2 unitj
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|_Example 1.5.3. Consider the functions f(z) = 22, g(z) = (z + 1)? and h(z) = (z — 2)2.
1) Describe how to get the graph of g from the graph of f.
2) Describe how to get the graph of h from the graph of g.
3) Describe how to get the graph of f from the graph of A.

Solution. To determine the transformation from f to g, write the function g as a function
of f and find the units of shift.

1) Because g(z) = f(z + 1) = f(x — (—1)), the graph g is a shift of the graph of f to the

by 1 unit.
2) Because h(zx) = g(x — 3), the graph h is a shift of the graph g to the by 3 units.
3) Because f(z) = h(z +2) = h(z — ( )), the graph of f is a shift of the graph & to
the by 2 units. J

Q How to Find the Horizontal Shift C

Suppose that g(z) = f(x + k). The horizontal shift C' can be found by solving the equation
C+k=0.Thus, C = —k.

_Example 1.5.4. Sketch the graph of f(z) = |z|. Then use the graph to sketch the graph
of h(z) = f(z +2) — 1.
Solution. By the definition of absolute value, the function f(z) = |z| can be written as
T z>0
f(x):{—x x <0
Since D = —1, and C = —2, the graph of h is a shift of the graph of f to the left by 2 units
and downward by 1 unit. The graphs of f and h are shown below.

Y

xXr xXr
-2 -2
-3 -3
—4 —4
-5+ -5 +
y = f(z) =|z| h(z)=fle+2)—1=|z+2 -1 J
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anmple 1.5.5. The function y = g(z) shown in the picture is a shift of the square root
function y = v/z. Find g(z).

Y
94

Solution. Since the graph of g is a shift of the graph of f(z) = v/z, the function g is defined
by g(z) = f(x — C) + D. Note that the function f has a starting point at (0,0), and the
function g has a starting point at (—1,—1). The defining equation of g implies the two
points are related by the the system of equations:

—1=0-C —1=0+D
C=1, D=—1.

Thus, the function gis given by g(z) = f(z—1)—1=/(z—1)+1—-1=/z — 1.

Definition 1.5.2 (Scaling)

Let f and g be two functions, and C and D be two real numbers. Assume that A > 0 and
B> 0.

If g(x) = Af(x), then the graph of g is obtained by scaling the graph of f by a factor of A
in the vertical direction. We say that the transformation from f to g a vertical scaling of
the function y = f(z) by a factor of A.

If g(x) = f(Bz), then the graph of g is obtained by scaling the graph of f by a factor of
+ in the horizontal direction. We say that the transformation from f to g a horizontal
scaling of the function y = f(z) by a factor of 1.

/
NG

LJ Remark

1. L I
If the factor A or 3 s greater than 1, the scaling is a stretch, and it is between 0 and 1,
the scaling is a compression.

If A< 0or B <0, then the function g is obtained from f by a reflection (see Definition
Definition 1.5.3) and a scaling.

@ 24 [ 224 PreCalculus Workbook


https://creativecommons.org/licenses/by-nc-sa/4.0/

Chapter 1 Introduction to Functions 1.5 Transformations

|_Example 1.5.6. The point (9,—15) is on the graph of y = f(z).
1) Find a point on the graph of g(z) = 1 f(z).
2) Find a point on the graph of g(z) = f(3z)
Solution.

1) Because f(9) = —15,

1 1
9(9):§f(9)=§( )=
Therefore, (9, ) is a point on the graph of g(z) = 3 f(z).
2) Because f(9) = —15 and g(z) = f(3x), if we let = be the solution of 3z = 9, that is, z =
, then
93) =13 -( ) = f(9) = —15.
Therefore, ( ,—15) is a point on the graph of g(z) = f(3z). J

|_Example 1.5.7. Describe how to get the graph of the function g(x) = 422 from the graph
of the function f(x).

Solution.

Option 1: Since g(x) = 4f(z), the graph of g can be obtained from the graph of f(z) =
x? by a vertical stretch by a factor of 4.

Option 2: Since g(z) = f(2z), the graph of g can be obtained from the graph of f(z) =
z? by a horizontal compression by a factor of 1.

Definition 1.5.3 (Reflections)
Let f and g be two functions.

If g(x) = —f(z), then the graph of g is obtained by reflecting the graph of f about the z
-axis. We say that the transformation from f to g a vertical reflection of the function
y = f(=).

If g(x) = f(—=z), then the graph of g is obtained by reflecting the graph of f about the y-
axis. We say that the transformation from f to g a horizontal reflection of the function

\y=f@)

L)
J

_Example 1.5.8. Reflect the graph of f(z) = |x — 1] about the z-axis and then about the y
-axis. Denote the resulting function by y = g(x). Find a defining equation of g.

Solution. Reflecting the graph of f about the z-axis gives the functiony = —f(z) = —|z —
1]. Reflecting the graph of y = — f(z) about the y-axis gives the function

y=glz) = () = = e +1] |
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F(ample 1.5.9. The graph of the function f(z) = 2* is shown below. Use reflections to

sketch the graph of the function g(z) = —(1)".

=N W
L L L
T T T

-KH“.’?”'TQ

4-3-2-101 1 2 3 4 7 7473721110/1/2"3—4 x

fla) =2 g(@) =—(3)"
Solution. The function g(z) = —(3)" can be written as g(z) = —f(—z), where f(z) = 22,
Thus, the graph of g can be obtained from the graph of f by reflecting the graph of f
about the y-axis and then about the z-axis. The graph of g is shown below.

S

Definition 1.5.4 (Even and Odd Functions)
A function f is an even function if f(—z) = f(z) for all z in the domain of f.

A function f is an odd function if f(—z) = —f(x) for all z in the domain of f.

NG

X? Symmetry of Even and Odd Functions

The graph of an even function is symmetric about y-axis, that is, if (z,y) is on the graph,
then (—z,y) is also on the graph.

The graph of an odd function is symmetric about the origin, that is, if (z,y) is the on the
graph, then (—z,—y) is also on the graph.

Example 1.5.10. Determine whether the functions is even, odd, or neither.

1) f(zr)=2%-1 2) g(z) =]z —1| 3) h(z) =23 —22 4) k(z) = %.
Solution.

1) Because f(—z) = (—z)? — 1 =22 — 1 = f(x), the function f is an even function.

2) Because g(—z) = |-z —1|= |z + 1] # |r — 1| = g(z) and g(—z) # —g(z), the function ¢
is neither even nor odd.

3) Because h(—z) = (—z)® — 2(—z) = —z® + 2z = —(z® — 22) = —h(z), the function his an
odd function.

4) Because k(—z) = — = 2 = k(z), the function & is an even function. J

(—=)?
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Q oOrder of Transformations

To get the graph of the function g(z) = Af(Bz + C) + D from the graph of the function
y = f(z), the order of horizontal or vertical transformations depends on how to get a point
(z,y) on the graph g from a point (a,b) on the graph of f. If (a,b) is a point on the graph
of f, then the solution (z,y) of the system of linear equations

a=Bx+C
y=Ab+ D

is the point on the graph of g obtained by transformations from the point (a, b). The order of
transformations depends on the order of algebraic operations used to solve for z and y.

One possible order of transformations is as follows:
« Vertical transformations (from the left (A) to the right (D)):

1) A vertical stretch/compression with the factor |A|

2) A vertical refection if A < 0.

3) A vertical shift of D units
* Horizontal transformations (from the right (C) to the left (B)):

1) A horizontal shift of —C units.

2) A horizontal stretch/compression with the factor ﬁ.

3) A horizontal refection about y-axis if B < 0.
The two groups of transformations can be switched as z and y can be solved individually.
Relection and scaling can be switced because of the commutativity of multiplication.
However, the order of shift determines the units of shift.

_Example 1.5.11. Describe how to obtain the graph g(z) = —2f(3z — 6) + 4 from the graph
of the function f.

Solution. To get the graph of the function g from the graph of the function f, we can
perform the vertical transformations first, followed by the horizontal transformations.

« For vertical transformations, working + Horizontal transformations correspond
with from left to right with A first and to how Bz + C = 0 is solved:

then D: 3z—-6=0 4) A horizontal shift

1) A vertical stretch by a factor of 2. 3z —6 26 - g +6="0f6 units to
T =

2) Areflection about the z-axis. | . (3z) = 1.2 — 5) A horizontal com-
pression by a factor

T=3 of . J
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|_Example 1.5.12. Find an equation of the function y = g(x) whose graph is obtained from
f(z) = /z by the following transformations in the given order.

) Stretch vertically by a factor of 2.
2) Shift downward 2 units.
3) Shift 3 units to the left.
4) Stretch horizontally by a factor 1.

Solution. Let f(x) = +/z. The graph of g can be obtained from the graph of f by the
following transformations:

1) Avertical stretch by a factor of 2: g, (z) = f(z) = 2y/x.
2) Avertical shift downward by 2 units: g,(z) = g,(z) + =2/ — 2.
3) A horizontal shift to the left by 3 units: g;(z) = g,(z +

4) A horizontal stretch by a factor of 3: g(z) = g5(

Therefore, the equation of the function g is given by

g(x)=2\/%x—|—3—2. J

When shifting horizontally, replace z with z — C, where |C| is the number of units shifted.
The sign of C matches the direction: right means positive, left means negative.

CJ Remark

_Example 1.5.13. Sketch the graph of the function g(z) = 2v/3z — 1 — 4 by a sequence of
transformation applied on the graph of f(z) = /.

Solution. The graph of g can be obtained from the graph of f(xz) = /z by the following
transformations:

1) A horizontal shift to by 1 unit.

2) A horizontal compression by a factor of

3) Avertical stretch by a factor of

4) A vertical shift by 4 units.
Y Y Y Y Y
3 3 3 3 2
9 flz) =V 9 2 2 — A
y=No=1 y=2vF—1 ol /e 545

=23z —1—4

-+ T I/ — : . -+
g(z)
t t t t t t t t t t t t T
-1+ -1+ -1+ -1+ -5+ J
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Exercises
]

#’ Exercise 1.5.1. Consider the functions f(z) = 22, g(xz) = (x + 1)2 — 2 and h(z) = (x — 2)? + 1.
1) Describe how to get the graph of g from the graph of f.
2) Describe how to get the graph of h from the graph of g.

A 1) Shift the graph of f to the left by 1 unit and downward by 2 units.
nswer:
2) Shift the graph of g to the right by 3 units and upward by 3 units.

47 Exercise 1.5.2. Determine whether the function is even, odd, or neither.

1) f(z)=1—2? 2) g(z) ==z 3) h(z) =a2* — 23

Answer: 1) The function fis even. 2) The function gis odd. 3) The function h is neither even nor odd.
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# Exercise 15.3. Sketch the graph of the function g(z) = —2|3z — 6| +4 by a sequence of
transformation applied on the graph of f(x) = |z|.

Answer:

#/ Exercise 15.4. Find an equation of the function y = g(z) whose graph is obtained from f(x) =
J/x by the following transformations in the given order.

1) Compress vertically by a factor of %
2) Reflect vertically.

3) Shift downward 2 units.

4) Compress horizontal by a factor 2.

5) Shift 3 units to the right.

Answer: g(z)=—3{/3z—3—2.
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#/ Exercise 1.5.5 (Optional). Describe how fo get f(z) = y/z from g(t) = —1+/2t + 1 — 3. (Hint:
find a defining equation f using g.)

Stretch the graph of g Stretch the graph of g

shift the graph of g up- Reflect the graph of g 3) vertically by a factor of 4) horizontally by a factor

R ward by 3 units. 2) about the z-axis. 1
Answer: 2. of 3.

5) Shift the graph of g to
the left by 1 unit.
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1.6 Inverse Functions

Definition 1.6.1 (Inverse Functions)

Let y = f(x) be a function with the domain A. A function f~!(z) with the domain B is an
inverse function of f if f~'(f(z)) =z forallin Band f(f~!(x)) for all z in A.

The notation f~! is read as “f inverse.”

L

&

<P Properties of Inverse Functions

1) If a function f has an inverse function, then it has a unique inverse function.
Proof: Suppose g is also an inverse f. Then f(g(z)) =z = f(f *(z)). Then g(z) =
FH(f (@) = fFHf(f =) = F (=)
2) Note that if f~! is the inverse of f, then f is also the inverse of f~! thatis f(f~(z)) =
z for all z in the domain of f~1.
3) Ingeneral, f7'(z) # f(z)~*. For example, if f(z) = 2z, then f~!(z) = £, but f(z)™ = .

4) The graphs of a one-to-one function f and its inverse f~1 are symmetric about the
diagonal line y = z.

5) Suppose f has the domain A and the range B, then f~! has the domain B and the
range A (and vice verse).

6) If f is a one-to-one (bijective) function, then f has an inverse function.

CJ Remark

If g is a function such that f(g(x)) = =z, then g is called a right inverse. If g(f(x)) = =, then
g is called a left inverse. If f has a left inverse, thena = b if f(a) = f(b) and fis called an
injective function. If f has right inverse, then for any y in the range of f, thereisan z =
g(y) in the domain of f such that f(z) = y and f is called a surjective (or onto) function.
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|_Example 1.6.1. Let f be a one-to-one function with f(3) = 4 and f(4) = 5. Find f~1(4).

Solution.
Because f(3) = 4, we have
P = e = |
|_Example 1.6.2. Let f(z) = -1 and g(z) = £, Determine if g is the inverse function of f.
Solution. Find f(g(x)) and g(f(x)).
+1 1 1
fa) = £ = g = .
1 4 +1
@) =9(-—) = = —=— ==
z—1 z—1
Because f(g(z)) = z and g(f(z)) = z, the function g is the inverse function of f. J

|_Example 1.6.3. Consider the function f(z) = 22 + 1 with z > 0. Sketch the graph of y =
f~1(z) without finding its equation.

Solution. The graph of f~1 is the reflection of the graph of f about the line y = z. To sketch
the graph of f~1, we can plot some points on the graph of f and then reflect them about
the liney = x.

|

@ Existance of Inverse Functions

Given a function y = f(z), if f is one-to-one (bijective), then the inverse function is the
unique solution y of the equation f(y) = x.

If f is not one-to-one, then the inverse function may not exist over its full domain.
However, an inverse function can exist by restricting f to a subdomain where it is one-
to-one.

For example, the function f(z) = 2% is not one-to-one on (—oo, co), but if we restrict the
domain to [0, ), the inverse function is f~!(z) = v/z.
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Example 1.6.4. Consider the function f(z) = 2z — 3. Find the inverse function f~! and its
domain and range.

Solution. To find the inverse function f~!, we solve for y from the equation f(y) = :
2y—3==x
2y =
y =
Therefore, the inverse function is given by

1 _r+3
f @) = =5~
The domain and range of f are both (—oo, 00). Thus, the domain and range of f~! are

also both ) J

|_Example 1.6.5. Consider the function f(z) = 5.
1) Find the inverse function f~! and its domain and range.
2) Find the range of f.
Solution.

1) To find the inverse function f~!, we solve for y from the equation f(y) = :

Yy,
y—1
y=x(y—1)
y=ay—c
=—x
y(l—z)=—x
y =
Therefore, the inverse function is given by
-1 . —Z
f (.’L') - 1_ x'
Because f(z) is also a rational expression, the domain of f can be found similary and

itis
(—o0,1)N
Thus, the range of f~tis
Since f~1(x) is a rational expression, it is undefined if 1 —x = 0, equivalently, z =
. Thus, in interval notation, the domain of f~!is
N (1, 00).

2) The range of f is the domain of f~1, that is,

|
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Chapter 1 Introduction to Functions 1.6 Inverse Functions

Example 1.6.6. Consider the function f(z) = vz — 2. Find the inverse function f~! and
its domain and range.

Solution. To find the inverse function f~!, we solve for y from the equation f(y) = :
Ji—2—a
y—2==x
y=x%+ 2.
Therefore, the inverse function is given by
fHz)=2%+2.
The domain of fis {z | z — 2 > 0}. In interval notation, it is . Thus, the range
of f~1is also [2, ).

2

Because vz — 2 is nonnegative by the definition of square root. The range of f is [0, o).
Thus, the domain of f~! is also

|_Example 1.6.7. Consider the function f(x) = 2(x + 1) — 1. Find an inverse function f~!.

Solution. To find the inverse function f~!, we solve for y from the equation f(y) = x:
2y+12 —1=z
2+ 13 =x+1

1
(y+1)? =T
2
y+1=
Y= 3 w—;l_l'

Therefore, the inverse function is given by

) =

The domain and range of f are both (—oo, 00). Thus, the domain and range of f~! are
also both (—o0, ).
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Exercises
]

#’ Exercise 1.6.1. Let f be a one-fo-one function with f(—2) = —3 and f(—3) = 4. Find f~1(-3).

Answer: f71(—3)= 2.

# Exercise 1.62. Let f(z)=2>—1andg(z) =Yz +1.Isg= f1?

Answer: Yes, g= 1.
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4’ Exercise 1.6.3. Consider the function f(z) = ﬁ + 1 whose graph is shown below. Sketch the
graph of f~! without finding its equation.

Y
4 -
3
2 -
1 -
'l 'l 'l 'l 'l y
—2 -1 0 1 2 3 4 T +
T Ao+
=1 T 3 1 o x
2 -+
2 4+ Answer:
1 -
~2:110__ 1 2 3 4 7
-2 =+
#/ Exercise 1.6.4. Consider the function f(z) = 910_721’ Find the inverse function f~! and its domain
and range.

Answer: f7l(z)= iﬁ; domain: (—oo,—1) N (=1, 00); range: (—oo, —1) N (—1,00).
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#/ Exercise 1.6.5. Consider the function f(x) = ¢ “’—gl + 2. Find the inverse function =1 and its
domain and range.

Answer: f~!(z) = 3(z — 2)3 + 1; domain: (—oo, 00); range: (—oo, 00).

#’ Exercise 1.6.6. Consider the function f(x) = v/z + 1 — 1. Find the inverse function f~! and its
domain and range.

Answer: f1(z) = (z +1)2 — 1; domain: [-1,c0); range: [-1, 00).
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Chapter 2 Polynomial and Rational Functions

2.1 Quadratic Functions and Applications

Definition 2.1.1 (Quadratic Functions)

A function f(z) = ax?® + bz + ¢ with a # 0 is called a y Axis of symmetry

/:1; =h

quadratic function. Its graph is called a parabola.

By completing the square, a quadratic function can
be written in the standard form (or vertex form):

f(z) =a(x —h)®2+k, where h = —% and k= f(h).

The vertical line z = —L (or z = &) is called the axis ,  ercept X_intercfpt
of symmetry. (a,0) (5,0)
The vertex is the intersection of the axis of symme- .

) y-intercept N Vertex
try and the parabola and has the coordinates (h, k), (0,¢) B

equivalently, (—&, f(—2)).
The y-intercept of a function f is the point (0, f(0)).

An z-intercept of a function f is the point (z,0), where z is a real solution of the equation
f(z) = 0. If the equation f(x) = 0 has no real solution, then there is no z-intercept.

-
\

CJ Remark

Some textbooks refer an intercept as the non-zero coordinate rather than the point.

Example 2.1.1. Find the vertex form of the quadratic function f(z) = 2z? + 4z + 1 and
determine the axis of symmetry, the vertex, z-intercepts, and the y-intercept of the
function.

Solution. The axis of symmetry is

The vertexis (—1, f(—1)) = (-1, ).
)

To find the z-intercepts, we solve the equation 2z% + 4z + 1 = 0. Using the quadratic
formula, we have

— ++/ 24 '1=_4i\/§:—1i V2
2.2 4

Therefore, the z-intercepts are
(—1+§,0) and (—1—\/75,0). J
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Chapter 2 Polynomial and Rational Functions 2.1 Quadratic Functions and Applications

X7 Properties of Quadratic Functions

* The domain of a quadratic function is (—oo, ).

* If a > 0, then the parabola opens upward, the function has an absolute minimum
f(—2), and the range of the function is [f(—), o).

The function is increasing on the interval (—oo, —2) and decreasing on the interval
b
(—24>0)-
+ If a < 0, then the parabola opens downward, the function has an absolute maximum
f(=2£), and the range of the function is (—oo, f(—=)].

The function is decreasing on the interval (—oo,—22) and increasing on the interval

(=28 0):
Example 2.1.2. Find the range, the maximum, and the minimum of each function.
1) f(x) =3z + 6x — 5. 2) f(z)=—222+4—-1.

Solution. To find the range, and extremum of each function, we first find the y-coori-
danate of the vertex using the formula f(—2).

1) For f(x) = 32% + 6x — 5:
f(_%) :f<_ 2.3 )Zf(_l):—'

Therefore, the range is | ,00). Because a = 3 > 0, the minimum is f(—1) = —8.
There is no maximum.

2) For f(z) = —2z% +4—1:

(o) = () =10 -

Therefore, the range is (—oo, |. Because a = —2 < 0, the maximum is f(0) = 3.
There is no minimum. J

Example 2.1.3. Abackyard farmer wants to enclose a rectangular space for a new garden
within her fenced backyard. She has purchased 80 feet of wire fencing to enclose three
sides, and she will use a section of the backyard fence as the fourth side. What's the
maximal possible area of the garden.

Solution. Let z be the length of the side parallel to the backyard fence, and y be the length
of the other two sides. Then the total length of the fencing used is given by the equation
z + 2y = &0,

which can be rewritten as

y =
The area A of the rectangular garden can be expressed as a function of z:
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Chapter 2 Polynomial and Rational Functions 2.1 Quadratic Functions and Applications

A(x):m-yzx-<40—g):

The function A(z) is a quadratic function with a = —3, b = 40, and ¢ = 0. Since a < 0, the
graph of A(z) opens downward and has an absolute maximum at

b —
20 2(—3) T

The maximal area is

A(40) = —% )2 440-( )= 800f2. J

Example 2.1.4. Aball is thrown upward from the top of a 40-foot-high building at a speed
of 80 feet per second. The ball’s height above ground can be modeled by the equation
H(t) = —16t? + 80t + 40.

1

) When does the ball reach the maximum height?
2) What is the maximum height of the ball?
)

3) When does the ball hit the ground? Round your answer to the nearest hundredth of
a second.

Solution. The ball reaches the maximum height at time

b 80
—_———— = seconds.
2a 2-(—-16) —

The maximum height of the ball is
H( )=-16-(__ )»+80-(____ )+40=__ feet.
To find when the ball hits the ground, we solve the equation
—16t> + 80t + 40 =0
2t2 — 10t — 5 = 0.
Using the quadratic formula, we have
— + ¢/ 2—4-2-(___ ) -10++60
2.2 4 '
Since time cannot be negative, we take the positive value:

—5 4+ 4/
t= + 2— ~ seconds. J

t =

t =
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2.2 Exercise
2.2 Exercise
4’ Exercise 2.2.1. For each of the following functions,
a) f(z)=2%—4z+1 b) f(z) = —22% —4x + 1.
1) Write the function in vertex form, 2) Find the axis of symmetry,
3) Find the vertex, 4) Find the y-intercept,
5) Find the z-intercepts if they exist, 6) Find the domain and range,

7) Find the global maximum or minimum if it exists.

a) Vertex form: f(z) = (z — 2)% — 3; axis of symmetry: z = 2; vertex: (2, —3); y-intercept: (0, 1); z-intercepts: (2 +

V/3,0) and (2 — /3,0); domain: (—o0, 00); range: [—3, oc); global minimum: —3 at = 2.
Answer:

b) Vertex form: f(z) = —2(z + 1) + 3; axis of symmetry: z = —1; vertex: (—1,3); y-intercept: (0,—1); z-inter-
cepts: (—1+ @,0 and (— — @,0); domain: (—oo, 0); range: (—oo, 3]; global maximum: 3 at z = —1.
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Chapter 2 Polynomial and Rational Functions 2.2 Exercise

# Exercise 2.2.2. Find the dimensions of the rectangular parking lots producing the greatest area
given that 500 feet of fencing will be used to for three sides.

Answer: 250 ft x 125 ft.

# Exercise 2.2.3. A soccer stadium holds 62,000 spectators. With a ticket price of $11, the average
attendance has been 26, 000. When the price dropped to $9, the average attendance rose to 31, 000.
Assuming that attendance is linearly related to ticket price, what ticket price would maximize revenue?

Answer: $10.
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Chapter 2 Polynomial and Rational Functions 2.2 Exercise

#’ Exercise 2.2.4. A toy rocket is launched in the air Ifs height, in meters above sea level, as a
function of time, in seconds, is given by h(t) = —4.9t? + 2t + 5.

1) Find the maximum height the rocket attains. Round your answer to the nearest hundredth meter.
2) When does the rocket reaches to 4 meters? Round your answer to the nearest hundredth second.

3) When does the rocket hit the ground? Round your answer to the nearest hundredth second.

Approximately 0.58 seconds and 1.75
seconds.
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2.3 Polynomial Functions

Definition 2.3.1 (Power Functions)

A power function is a function that simplifies to the form f(z) = az”, where a is a
non-zero constant (the coefficient), r is a real number (the exponent), and z is the
independent variable

The domain of f(z) = ax” is usually all real numbers, but for some values of r it may be
restricted to = > 0.

NG

-

Example 2.3.1. Determine if the function is a power function.

1) f(z) = —2a3 2) f(z)=2% 3) f(z) =Yz 4) f(x)=

Solution.

1) Yes, it is a power function with a = —2 and r = 3.
2) Yes, it is a power function witha =1 and r =
3) Yes, it is a power function witha =1 and r =

)

4 , it is an exponential function.

Definition 2.3.2 (End Behavior of Functions)

The end behavior of a function f describes what happens to f(z) as x approaches
positive or negative infinity.

If f(xz) approaches a fixed value b as z goes to oo or —co, then the horizontal line y = b is
called a horizontal asymptote.

L]
- J

(® Notation for End Behavior

We use an arrow — to mean “goes to"” or “approaches.”
For example, if f(z) = z, then the end behavior can be described as follows:

Asz — oo, f(x) = 0c0. ASz — —o0, f(x) = —00.

Q How to Determine End Behavior

To determine the end behavior of f, choose some very large numbers N > 0 and evaluate
f(N) and f(—N). The trend shows whether f(z) approaches oo, —oo, or a finite value.

For example, if f£(1000), f(10000) are all very large numbers, then as x — oo, f(z) — oc.

If the function is a power function, it is often convenient to plug in oo or —co directly into
the function to determine the end behavior.

@ 45 [ 224 PreCalculus Workbook


https://creativecommons.org/licenses/by-nc-sa/4.0/
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@ operations with Infinity

When working with co and —oo, use these rules:

o0+ 00 = o0 o0+ c=0o0 —00 — 00 = —00 -0 +¢c=—
o-c=o00ife>0 0-c=—0ifc<0 | -0 -c=—0ifc>0] —0-c=xifc<0
00 - 00 = 00 —00 - —00 = OO 00% = oo (a > 0) 00? =0 (a < 0)
Note:

* The equal signs indicate trending behavior, not strict equality.

* 00 + (—o0) is indeterminate.

+ 2 isindeterminate.

* (—o0)® only makes sense when q is a rational number with an odd denominator. In
this case, (—o0)* = —oo if the numerator is odd, and (—o0)* = o if the numerator
is even.

Example 2.3.2. Determine the end behavior(s) of the function.

1) flz) = —223 2) flx)=2% 3) f(z)= =

Solution.

N

Definition 2.3.3 (Polynomial Functions)
Let n be an integer with n > 0. A polynomial function of degree n is a function that
simplifies to the form:
f(x) = a,z™ + - + ayx? + a1 + ay,
where q, are real numbers fori =0,1,...,nand a,, # 0.

* Each g, is a coefficient.

* Each product a;z° is a term of the polynomial.

* The term a,,z™ is the leading term, and q,, is the leading coefficient.
« The number q, is the constant term.

NG
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X7 Properties of Polynomial Functions

* The domain of a polynomial function is (—oo, 00).
* The range of an odd degree polynomial function is also (—oo, c0).

* Therange of an even degree polynomial functionis either [y,.,, 00) ifa,, > 00r (—00, Y.
if a,, < 0, where y_,, and y,,,.) are the absolute extrema.

* The end behavior of a polynomial function f(z) = a,z™ + --- + a, of degree n is com-
pletely determined by the end behavior of the power function g(z) = a,z".

n odd, a,, >0 nodd, a, <0 neven,a, >0 neven, a, <0
) Y ) Y
fz) = 00 fz) = —o0 fz) = —o0 fz) = o0
357—>—oo aSz—>\oo an—>io aSa:—/>oo
x SR SN x O x ' x
f(z) = —0 f(z) = o0 f(z) = —0 f(z) = o0
asz — oo asz — —oo asz — 0o asr — —oo
Example 2.3.3. Determine the end behavior of the function using the arrow notation.
1) flz)=2z*—3zx+1 2) g(z) =z — 33 + 222
Solution.
1) Asx — oo, f(x) = 200t = . 2) Asz — o0, g(z) — —3 - 003 = .
As x — —oo, f(z) = 2+ (—00)* = . Asz — —o0, g(x) = —3 - (—00)® = J

Example 2.3.4. Identify the degree, the leading therm and the end behavior of the
polynomial function using the arrow notation.

1) f(z) = —-32%(x —1)(z + 4) 2) f(z)=222(1—2z)(z+1)
Solution. To determine the degree and behavior, first simplify the expression.
1) f(z) = —32%(x — 1)(z +4) = —3z%(2? + ) — 3z* + 923 + 1222

The degree is 4, the leading term is —3z%.

Asz — 0o, f(z) »—3-00*=_ .Asz— —oo, f(z) -3 (—oc0)t=
2) f(z)=223(1—2)(z +1) = 223( +1) = —22° + 223 + 222.

The degree is 5, the leading term is —2x5.

As z — oo, f(x) = —2-00° = Asz — —o0, f(z) = =2 (—00)® = . J
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Exercises

|

4’ Exercise 2.3.1. Find the degree and leading coefficient, and determined the end behavior for
the given polynomial.

1) f(z)=—-22* 2) f(z)=22°—2> 3) f(z)=—-2z(1—2%) 4) f(z)=(2*>—-1)(2z*—1)

1) Degree: 4; leading coefficient: -2; end behavior: as z — +oo, f(z) = —o0.

— +oo respectively.

x
Answer:
X

)
2) Degree: 5; leading coefficient: 2; end behavior: as z — +o0, f(
3) Degree: 3; leading coefficient: 2; end behavior: as z — +oo, f(
)

)
) — +oo respectively.
)

4) Degree: 6; leading coefficient: 2; end behavior: as z — +o0, f(z) — oco.
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2.4 Dividing of Polynomials

Theorem 2.4.1 (Euclidean Division Algorithm)
Let p(z) and d(z) be two polynomial. Suppose that d(z) is non-zero and the degree of
d(z) is less than or equal to the degree of f(x). Then there exist unique polynomials g(z)
and r(z) such that

p(x) = d(z)q(x) + r(z)
and the degree of r(z) is less than the degree of d(z).

Definition 2.4.2 (Long Division)

In the above theorem:

* p(x) is the dividend,

* d(z) is the divisor,

* q(z) is the quotient,
(z

* r(x) is the remainder.

If r(z) =0, then d(z) divides p(z). If r(z) # 0, then the degree of r(x) is less than the
degree of d(z), and

p(z) _ rz)

aw) 1O ay
A division algorithm computes the quotient and remainder.

The long division algorithm repeatedly applies Euclidean division to monomial quo-
tients until the remainder has degree less than the divisor.

L]
- J

Example 2.4.1. Divide 623 + 1122 — 31z + 15 by 3z — 2.

Solution. We set up the long division as follows:

Explanation: In each step, we di-

2z2  + — 7

vide the leading term (boxed) of the
@—2/ 62°| + 11z* — 3lz + 15 current dividend (in odd-numbered
— (623 — 4a?) rows) by the leading term (circled) of
31 the divisor to get a term of the quo-
> tient (top row). Then we multiply the
— (1527 — ) entire divisor by that quotient term
—21g + and place it in the row below and
o +o14) subtract it from the current dividend
— ) to get the new dividend. The last row

is the remainder.

Thus, 60° + 1122 — 31z +15 1
o = 2%+ 50— T+ —. J
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Example 2.4.2. Divide 4z* —z + 5 by 2% — z + 3.

Solution. We set up the long division as follows:

42
xQ—x+3/4x4 + 022 4+ 022 — 2 + 5
— (423 — 43 + 122?)
43 — 1222 — =z
— (42? )
+ 9
— (—8z* + 8z + )
.+ 29
Thus, 4
tﬂ_—ﬂ:4x2+4x—8+x2_—m

Definition 2.4.3 (Synthetic Division)

Synthetic division is a shortcut that can be used when the divisor is linear binomial in the
form z — c. In synthetic division, only the coefficients are used in the division process.

J

N

Example 2.4.3. Use synthetic division to divide 423 + 102? — 6z — 20 by = + 2.

Solution. We set up the synthetic division as follows:

Explanation: We bring down the leading coeffi-

—2(4 10 -6 —20 . . . .
cient 4 to the third row. Then we multiply it by

—38 20 the zero of the divisor, that is —2, and add it to
the next coefficient 10 to get 2. We repeat this
4 2 |0 process until we reach the last coefficient. The

last value (in boxed) is the remainder.

Thus, 423 + 1022 — 63 — 20

=422 + 22 — 10. _J
T+ 2

| Example 2.4.4. Use synthetic division to divide —9z* + 102® + 722 — 6 by 2 — 1.

Solution. We set up the synthetic division as follows:

1l -9 10 7 0 —6 Thus, —9x* + 1023 + 722 —6
x—1

2
= —92° + 2% + 8z + 8+ ——.
x—1
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—

Theorem 2.4.4 (Reminder Theorem)
If a polynomial f(z) is divided by z — ¢, then the remainder is the value f(c). .

Proof. By the Euclidean Division Algorithm, we have
flz) = (x —c)q(z) +,

where r is the remainder. Since the degree of r is less than the degree of x — ¢, » must be
a constant. Thus, we can write

f(@) = (z = c)q(z) + f(c).
Evaluating both sides at z = ¢, we have

fle)=(c—c)glc) +r=r.

U

anmple 2.4.5. Use the Remainder Theorem to evaluate f(z) = 6z* — 2% — 1522 + 22 — 7
atzx = 2.

Solution. By the Remainder Theorem, the remainder when f(z) is divided by z — 2 is f(2).
Using synthetic division, we have:

216 -1 —15 2 —7
12 14
6 11
Thus, £(2) = 25. J
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Exercises
]

#’ Exercise 2.41 Divide 322 — Tz — 3 by 3z — 1.

. 32273 _ 5
Answer: T 8z-1 = r—2— 3z_1°

#’ Exercise 2.42. Divide 1623 — 1222 + 20z — 3 by 4z + 5.

. 1623-12224202-3 _ 4,.2 78
Answer: = det5. = 4r* —8x + 15 — Toi5
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4’ Exercise 2.43. Use synthetic division to divide 523 — 3z — 36 by = — 3.

. 522-32-36 _ r,.2 90
Answer: >*—=2=2 = 5z° + 15z + 42 + _=.

#’ Exercise 2.4.4. Divide 2z* 4+ 423 — 322 — 52z —2 by z + 2.

Answer: 2z-H42’=30%-50-2 _ 9,3 4 (g2 — 3z + 1.

4’ Exercise 2.4.5. Use the Remainder Theorem fo evaluate f(z) = 2z® — 522 +4x — 1 at z = —1.

Answer: f(—1) =12.
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2.5 Zeros of Polynomials

Definition 2.5.1 (Zeros of a Polynomial)
If fis a polynomial function, then a number c is called a zero of f if f(c¢) = 0.
-

L

Theorem 2.5.2
Let f be a polynomial and ¢ a real number. The following are equivalent:

1) cis a zero of f.
2) x —cis afactor of f(x).

)
3) z = cis a solution of f(z) = 0.
)

4) (c,0)is an z-intercept of y = f(z).

Proof. The equivalence of (4) and (1) follows directly from the definition of z-intercept.
We show each remaining statement implies the next:

1) implies 2): Suppose cis a zero of f. Then f(c) = 0. By the Euclidean Division Algorithm,
there exist polynomials ¢(z) and r(z) such that f(z) = (x — ¢)q(z) + r, where the degree
of r is less than the degree of z — ¢. Since f(c) = 0, by the Remainder Theorem, r = 0.
Therefore, f(z) = (z — ¢)q(x), so x — c is a factor of f(z).

2) implies 3): Suppose z — c is a factor of f(z). Then there exists a polynomial ¢(z) such
that f(z) = (x — ¢)q(z). By the zero-product property, if f(z) =0,thenxz —c=0,s0 z =
c is a solution.

3) implies 1): Suppose x = cis a solution of f(x) = 0. Then f(c) = 0, so c is a zero of f.
]

anmple 2.5.1. Find z-intercepts and the y-intercept of the polynomial function
f(z) =2+ 32% —z — 3.

Solution. To find the z-intercepts, we set f(z) = 0 and factor by grouping method:
flz)=2%+32% —x — 3 = (2% + 32?) + (—z — 3)

=z%(z+3)+(__ )(z+3)
= (z+3)(a* - 1)
=(x+3)(z+1)( ).

Solving f(x) = 0 by setting each factor equal to zero, we have: x = -3,z = —1,and z = 1.
Thus, the z-intercepts are (1,0), (—1,0), and

The y-intercept is found by evaluating f(0):
f(0)=0%+3-02—-0—-3=-3.
Thus, the y-intercept is . J
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&

Definition 2.5.3 (Turning Point)

A turning point (also known as a local extremum) is a point at which the function values
change from increasing to decreasing or decreasing to increasing.

L]
/

Theorem 2.5.4 (Fundamental Theorem of Algebra')
A degree n polynomial function has at least one complex zero.

Corollary 2.5.4.1 (Maximal Number of Turning Points?)

A degree n polynomial function may have at most n zeros and n — 1 turning points.

Example 2.5.2. Consider the polynomial function f(z) = (z — 2)(z + 1)(x — 4). Determine
the zeros, the number of turning points, the z-intercepts, and the y-intercept.

Solution. The zeros of f are 2, —1, and

Since the degree of f is 3, it may have at most turning points.
The z-intercepts are (2,0), (—1,0), and

The y-intercept is found by evaluating f(0):
f(0)=(0—-2)(0+1)(0—4)=8.
Thus, the y-intercept is (0, 8). J

Example 2.5.3. What can we conclude about the leading term of the polynomial function
y = f(z) represented by the graph below.

)
4 -,
31 Solution. Since as x — 400, f(x) — oo, the
, leading coefficient is and the de-

gree must be

Since the graph has three turning points,

N 3 4 7 the degree of the polynomial is at least

Thus, the leading term is of the form az™,
wherea > 0andn > 4. J

'A relatively elementary proof can be found at https://tinyurl.com/tFToA
*The corollary can be proved by induction together with facts of the derivative function.
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Theorem 2.5.5 (Rational Zero Theorem)

Let f(z) = a,z™ +a, ;2" ! + -+ a,z + a, be polynomial with integer coefficients. Then
every rational zero of f(z) is in the form £, where p is a factor of the constant term q,
and q is a factor of the leading coefficient a,,.

Example 2.5.4. List all possible rational zeros of f(z) = 2z* — 523 + 22 — 4.

Solution. The leading coefficient a, = 2 has factors +1 and +2.

The constant has factors +1, +2, and

Thus, the possible rational zeros are

il—ﬂ. i2—i4—i i4—i4 :Q
1 7 1 T2 T — 1 7 2 J

|_Example 2.5.5. Find the zeros of f(z) = 423 — 3z — 1.

Solution. Factoring the leading coefficient and the constant term, and then applying the
Rational Zero Theorem, we have the possible rational zeros:

1
1 Z
+1, :|:2, £

Using synthetic division to test those possible zeros:

We find that 1 is a zero of f. From the synthetic division, we have
flx)=(z—1)(42* + 4z +1).
The rest of the zeros are found by solving 4z + 4z + 1 = 0. This quadratic equation can
be solved using the rational zero theorem, factorization, completing the square, or the
quadratic formula. Here, we use the factorization method:
42 +4x+1=0
(2¢+1)(2z+1) =0

2r+1=0
xr=

Thus, the zeros of f are 1 and —1. J
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Theorem 2.5.6 (Linear Factorization)
Let f(z) be a polynomial with the degree n > 1 and the leading coefficient a,,. Then
f(@) = a,(z —c;)(x = cp)(z —cp),

where ¢; are complex numbers.

Proof. By the Fundamental Theorem of Algebra, f(z) has at least one complex zero ¢,. By
the Factor Theorem, x — ¢, is a factor of f(z). Thus, there exists a polynomial ¢(z) such that
f(@) = (z = ¢1)q().

The degree of ¢(z) is n — 1. Repeating this process for ¢(z), we can factor f(xz) completely
into linear factors. O

Proposition 2.5.7 (Complex Conjugate Roots)

Let f(z) be a polynomial with real coefficients. If a + b is a zero of f, then a — b is also
a zero of f.

L3

Proof. For a complex number z = a + b1, its conjugateisz =a — bi. If w = ¢+ d i is another
complex number, then

ztw=z+w, Zw=2 W.
Because the coefficients of f are real numbers, we have

fz)=a, 2" +a, - 2"+ +a-z2+a

=a, - 2"+a, ;- 2" 14+ 4+a-Z+a,

= f(2).
Therefore, if f(a +bi) =0, then f(a—bi) = f(a+ bi) = 0 which means thata —biis also a
zero of f. O

Proposition 2.5.8 (Irrational Conjugate Roots?)

Let f(x) be a polynomial with rational coefficients. If a + b/m is a zero, where a and b are
rational numbers and /m is irrational, then a — by/m is also a zero.

L3

Proof. The proof is similar to that of the Complex Conjugate Roots. We leave it as an
exercise. O

Corollary 2.5.8.1 (Factorizations of Polynomials with Real Coefficients)

Let f(x) be a polynomial with real coefficients. Then f(z) can be factored into linear and
irreducible quadratic factors with real coefficients.

&

Proof. This is a direct consequence of the Linear Factorization theorem and the Complex
Conjugate Roots proposition. O

3Conjugates are fundamental in Galois theory. For more details, see the Wikipedia article Conjugate
element (field theory).
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|_Example 2.5.6. Find a fourth degree polynomial with real coefficients that has zeros of
—3, 2, i, such that f(—2) = 100.

Solution. Since the polynomial has real coefficients and i is a zero, by the Complex
Conjugate Roots proposition, —i is also a zero. Because the degree of the polynomial is
four, we have

f@)=a(e—___ )(=-— )z — )z — )
=a(z+3)(x—2)(z? +1).
To determine the value of a, we use the condition f(—2) = 100:
f2)=al____ +3)(=2-2)((-2)*+1)
=a(1)(—4)(_)

= —20a.
From f(—2) = 100, we have
—20a = 100
a= —
Thus, an equation for f is
f(z) = —5(z + 3)(z — 2)(z2 + 1). J

|_Example 2.5.7. Let f(x) = z* +22% — 8.
1) Factor f into linear and irreducible quadratic factors with real coefficients.
2) Factor f completely into linear factors with complex coefficients.
Solution. Note that 24 = (z2)?, so we can treat f as a quadratic in z2.
First, factor f using undetermined coefficients:
f(z)=z*+ 222 -8
= (2~ )t +4)
Solving z% — 2 = 0 gives two linear factors with real coefficients:
r?—2= (m—x@)(wﬁ—_)
Solving z% + 4 = 0 gives two linear factors with complex coefficients:
?+4=(z—2i)(z+ ).

1) To factor f into linear and irreducible quadratic factors with real coefficients, keep
x? + 4 as is and factor z2 — 2:

flz) = (x - \/5) (33 + \/§>(x2 +4).

1) To factor f completely into linear factors with complex coefficients, use all four linear
factors:

flz) = (2= V2)(z+ V2)(z — 20)(z + 2i). J
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Exercises
]

#7 Exercise 2.5.1. Find z-intercepts (if they exist) and the y-intercept of the polynomial function.

1) f(z)=—-22*+22+1 2) flz)=a®+2%— 4z —4

Answer: 1) z-intercepts: none; y-intercept: (0,1). 2) z-intercepts: (—2,0) and (2,0); y-intercept: (0, —4).

#’ Exercise 2.5.2. Find all zeros of f(x) = 2x3 + 52% — 11z + 4.

Answer: The zeros are % —4,and 1.
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# Exercise 2.5.3. Find a fourth degree polynomial with real coefficients that has zeros of —1, 2,
1 + 4, such that f(—2) = 10.

Answer: f(z)=—(z+1)(z —2)(z* — 2z + 2).
#’ Exercise 25.4. Let f(z) = 23 — 522 + 62 — 30.
1) Factor f into linear and irreducible quadratic factors with real coefficients.

2) Factor f completely into linear factors with complex coefficients.

Answer: 1) f(z) = (z—3)(z>—22+10). 2) f(z)=(z—3)(z—1—3i)(z—1+31).
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2.6 Graphs of Polynomials

Definition 2.6.1 (Multiplicity of a Zero)

We say a zero c of a polynomial function f has the multiplicity & if f(z) = (z — ¢)*g(x)
and cis not a zero of g.

L

-

Example 2.6.1. Find the zeros of the polynomial function f(z) = z3(z — 1)?(z — 2) and
determine their multiplicities.

Solution. By the Factor Theorem, we see that the zeros of f are
0, , and 2.

By the definition multiplicity, we have

Zeros: 0 1 2
Multiplicities: 3

a

Example 2.6.2. A polynomial function f of degree 3 has two zeros 1 and 2 with multiplicity
2 and 1 respectively. The y-intercept is (0, —4). Find an equation for P.

Solution. Since the zero 1 has multiplicity 2 and the zero 2 has multiplicity 1, we have
fl@) = (z —1)*(z — 2)q(2).

Because the degree of f is 3, the degree of ¢q(z) must be 0, that is, ¢(z) = a, where a is a

constant. Thus, we have

f@)=a(z—__ )(z- )-
To determine the value of a, we use the condition that the y-intercept is (0, —4:
fO)=a(0-1)2(0-2)=__
, we have a = 2.

From f(0) =

Thus, an equation for f is

_J

f(z) =

<7 Local Graph Near a Zero

Let f be a polynomial with positive leading coefficient and c is a zero of f of multiplicity
k. Write f(z) = (z — c)¥q(x)

The local shape of the graph near c is determined by the value of k and the sign of ¢(c):

Cross

touch

Snake-cross

61/224

c

P

k=1 k=1, k even, k even, k> 1and odd, k> 1and odd,
q(c) >0 q(c) <0 q(c)>0 q(c) <0 q(c) >0 q(c) <0
) N B IO NI " "

C
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2.6 Graphs of Polynomials

Example 2.6.3. Use the graph of the function of degree 6 in the figure below to identify
the zeros of the function and their possible multiplicities.

Solution. The zeros of the function are —1, 0, and 2.

()
T Because the graph touches the z-axis at z = —1, the
5 multiplicity is is even.
Because the graph crosses the z-axis t = =0, the
M multiplicity is
T jZ o 1 Because the graph snake-crosses the z-axis at x = 2,
the multiplicity is odd and greater than 1.
—1
Because the degree of the polynomial is 6, the zeros
=21 and their multiplicities are:
—3 Zeros: —1 0 2
Multiplicities: 1 J

|_Example 2.6.4. Find a polynomial of the least degree whose graph is given below.

Y

Solution. From the graph, we see that the zeros are
—2,0,and 1.

Because the graph touches the z-axis atz = —2, the
multiplicity is at least

Because the graph crosses the z-axis t x =0, the
multiplicity is 1.

Because the graph snake-crosses the z-axis at z =
1, the multiplicity is at least

Thus, an equation for the polynomial of least de-
gree is
f(z) = az3(z + 2)*(z — 1).

Since the point (—1,—2) is on the graph, the coefficient a satisfies the equation

f(=1) =a(-142)3(-1)*(-1-1) = —2.
. Therefore, an equation for the polynomial is

flx) = —23(z +2)%(x —1). J

Solving for a gives a =

PreCalculus Workbook

@ 62 /224


https://creativecommons.org/licenses/by-nc-sa/4.0/

Chapter 2 Polynomial and Rational Functions 2.6 Graphs of Polynomials

Definition 2.6.2 (Continuity of Polynomials)

A function is continuous on an interval if its graph has no breaks there. It is smooth on
an interval if its graph has no breaks and no sharp corners.

A function is continuous (respectively, smooth) if it is continuous (respectively, smooth)
on every interval in its domain.

Proposition 2.6.3

Polynomial functions and rational functions are smooth functions.
-

N

Theorem 2.6.4 (Intermediate Value Theorem)
If f is continuous on [a,b] and f(a)f(b) <0, then there
exists at least one ¢ between a and b such that f(c¢) = 0.

i
In particular, this holds for polynomial and rational func- \/c b
tions.

Corollary 2.6.4.1

Let f be a polynomial function, and let @ and b be real zeros of f. If f has no other zeros
between a and b, then either f(z) > 0 for all x between a and b, or f(z) <0 for all z
between a and b.

Proof. Assume, for contradiction, that there exist ¢; and ¢, between a and b such that
f(ey)f(ey) < 0. By the Intermediate Value Theorem, there is at least one d between ¢, and
¢, With f(d) = 0. This contradicts the assumption that f has no other zeros between a and
b. Therefore, the corollary holds. O

Theorem 2.6.5 (Rolles's Theorem)

Let f be a smooth function, a and b two zeros. Then f has
at lease one local extremum (turning point) between a

and b. /a C l.;\ -

In particular, this holds for polynomial and rational func-
tions.

(J Remark

Continuity and smoothness are key concepts in Calculus. The Intermediate Value Theo-
rem and Rolle’s Theorem are fundamental tools, but their proofs require concepts of
limit and derivative, which are beyond the scope of this course.
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Example 2.6.5. Determine if the polynomial function f(x) = 5z* — 223 — 20 has a zero on
the interval [1, 2].

Solution. Since 1™ = 1, it's easier to compute f(1):
f(1)=5(1)*—2(1)° —20 =
For f(2), we can use the Remainder Theorem together with synthetic division:
215 =2 0 0 —20
10

S 16 44

Since f(1)f(2) <0 and f is continuous over [1,2], by the Intermediate Value Theorem,
there exists at least one value ¢ between 1 and 2 such that f(c) = 0. J

Example 2.6.6. The function f(z)=2® —4z has the zeros z = -2, z =0, and z = 2.
Determine the intervals over which f(x) > 0.

Solution.

Because the degree of fis , by the Fundamental Theorem of Algebra, f has at most
3 real zeros. Therefore, there are no zeros other than the given ones.

The zeros divide the real line into four intervals: (—oo, —2), (—2,0), (0,2), and (2, c0).

Since f is continuous, by the corollary of the Intermediate Value Theorem, the sign of
f(z) does not change within each interval.

To determine where f(x) > 0, test a point in each interval. The test values and zeros
are shown in the figure below. The open circles indicate that the zeros are not included
because the inequality sign is >.

Test values — -3 —1 1 3

S0
()
&

Zeros — -9
* For (—o0,—2), let z = —3, then f(—3) 0.
* For (—2,0), let z = —1, then f(—1) 0.
* For (0,2), letz =1, then f(1) 0.

* For (2,00), let x = 3, then f(3) 0.

Therefore, f(x) > 0 on the intervals U . J
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Definition 2.6.6 (Guidelines for Graphing Polynomial Functions)
1) Plot the y-intercept.

2) Find real zeros and their multiplicities; sketch the local graph near each z-intercept.
3) Determine end behavior and sketch the left and right tails.
)

4) Testvalues to check whether the graph lies above or below the z-axis between zeros;
estimate turning points.

5) Connect points and local graphs smoothly.

NG

N

Example 2.6.7. Sketch the graph of the polynomial function

fz) = 1_12@: C4)(z— 1%z +3).

Solution.
1) The y-interceptis f(0) = :5(0 —4)(0 — 1)%(0 + 3) =

2) The real zeros are —3, 1, and 4 with multiplicities 1, 2, and 1 respectively. The local
graphs near the z-intercepts are shown below.

3) Since the degree of f is 4 (even) and the leading coefficient is positive, the end
behavior is: as z — —oo, f(z) — oo; and as z — oo, f(z) — 0.

4) To determine whether the graph lies above or below the z-axis between zeros, test
values in each interval:

* For (—oo,—3), letz = —4,then f(—4) = L(—4—4)(—4—1)?(—4+3) =

* For (=3,1), letz =0, then f(0) = (0 —4)(0—1)>(0+3) =
* For (1,4),letz =2,then f(2) = 5(2—-4)(2—-1)?(2+3) =

Therefore, the graph lies below the z-axis on ,and above on

5) Using this information, we can sketch the graph of f as shown below.

Y

5
4
3 4+
2
1

Sl J
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Exercises
]

# Exercise 2.6.1. Find the zeros and their multiplicities of the polynomial function
f(z) = 3z* — 1523 + 1222,

Zeros: 0 1 4
Multiplicities: 2 1 1

Answer:

# Exercise 2.6.2. A polynomial function P of degree 4 has two zeros 1 and 2 with multiplicity 3
and 1 respectively. The y-intercept is (0, —4). Find an equation for P.

Answer: P(z) = —2(z —1)3(z — 2).

#’ Exercise 2.6.3. Find a polynomial of the least degree whose graph is given below.

Answer: f(z) = —iﬁ(z —1)2(z + 2)3.
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# Exercise 2.6.4. Skefch the graph of the polynomial function
flz) = —xt — 23 + 222

Answer: . A\ A

-342-101 1| 2 3 7

—2 =+
-3 +
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2.7 Rational Functions

Definition 2.7.1 (Rational Functions)

Let p(z) and g(x) be polynomials with deg(q(z)) > 0. The function f(z) = % is called a
rational function. The domain of fis {z | ¢(z) # 0}.

L

S

Example 2.7.1. Find the domain of f(z) = % in interval notation.

Solution. To find the domain of f, we need to find the values of z such that the denomi-
nator is not zero. We have

22 —-9=0
(x—3)(z+3)=0
r=_ o x=
Therefore, the domain of fis (—oo, ) U (-3, ) U (3, ).

Definition 2.7.2 (Asymptotes and Holes)

A vertical asymptote of a function f is a vertical line x = a where the graph of f
approaches positive or negative infinity as = approaches a from the left or right. In
other words, as x — a~ ora*, f(x) — oo or f(x) — —oo, where z — a~ (or a™) means =
approaches a from the left (respectively, right).

A function f has a removable discontinuity (or hole) at x = a if f(z) — b as x — a but
f(a) is undefined.

Let f = % be a rational function:
» If p(a) = q(a) =0, then f has a hole at a.
* If g(a) = 0 but p(a) # 0, then f has a vertical asymptote at z = a.

A slant (oblique) asymptote of a function f is a line y = mz + b with m # 0 where the
graph of f approaches mz + b as = goes to positive or negative infinity. That is, as z —
o0 Or £ — —oo, f(x) = mzx + b.

) )
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Q How to Find Horizontal and Slanted Asymptotes

m m—1
Let f(z) = @) _ amd™ + @ - o FOEF o e 5 rational function.
q(x) b,x" +b, 1"+ ...+ bx+b

If m < n, then f has a horizontal asymptote = = 0;

* If m = n, then f has a horizontal asymptote z = 3=;

* If m = n+ 1, then f has a slated asysmptote y = mx + b, where mx + b is the quotient of
p(z) divided by ¢(z).

* If m > n+ 1, then f has no horizontal or slated asymptote;

Example 2.7.2. Find equations for the asymptotes of the function f graphed in the figure
below.

Solution. From the graph, we observe:
* Asz — —oo, f(z) — 2.

* Asz — oo, f(z) —

*Asz — 17, f(z) » —o0.

* Asz — 17, f(z) —

— % w ~ ot o
/ L L L L @
T t t t t

Therefore, f has a horizontal asymp-
\ tote and a vertical asymptote

1 o i

Example 2.7.3. Find equations for the asymptotes of the function f graphed in the figure

elow.
y Solution. As x — 1%, the graph approaches
41 the vertical line z = . Therefore, f
5 has a vertical asymptote
5 1 As z — 400, the graph approaches the
slanted line. Therefore, f has a slanted
1 -
asymptote.
5o 10 2 3 4 5 @ Because the slanted line passes through
| (0 and (0, ),
an equation of the slanted line is
Y= z— 1.
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22 +1
202 — 3z + 1
Solution. Since the degree of the numerator is equal to the degree of the denominator,
f has a horizontal asymptote at

|_Example 2.7.4. Find the asymptotes of the function f(z) =

y =
To find vertical asymptotes, set the denominator equal to zero and solve for z:
202 -3z +1=0

2z —1)(z—1)=0
r = or r =

Therefore, f has vertical asymptotes at
T = and z = . J

. . —z?+ 3z -1
Example 2.7.5. Find the asymptotes of the function f(z) = —
x —
Solution. Since the degree of the numerator is one more than the degree of the denom-
inator, f has a slant asymptote. Using polynomial long division or synthetic division, we

have

—z2 43z —1 _ 1
x—1 N + x—1
Therefore, an equation of the slant asymptote is
Y= z+
To find vertical asymptotes, set the denominator equal to zero and solve for z:
r—1=0
T = —
Therefore, f has a vertical asymptote at J
xTr =

224+2x—6
3 —2x2 —x+2°

|_Example 2.7.6. Find the asymptotes and holes of the function f(z) =

Solution. Factor the numerator and denominator:
B (z+3)(z—2)
fla) = (x—2)(z+1)(z—1)

Since z — 2 is a common factor in the numerator and denominator, f has a hole at
Tr =

The vertical asymptotes are determined by zeros of the denominator after canceling
common factors. The denominator of the reduced form of f(z) is (z + 1)( ).
Therefore, the vertical asysmptotes of f are

T = and x =

Since the degree of the numerator is less than the degree of the denominator, f has a
horizontal asymptote at
y= |
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Definition 2.7.3 (Guidelines for Graphing Rational Functions)
1) Find the y-intercept and plot it.

2) Find the z-intercept(s) and plot them.
3) Identify all vertical asymptotes and draw them as dashed lines.
)

4) Determine whether the function has a horizontal or slant asymptote (or neither), and
draw the asymptote as a dashed line.

5) In each interval between consecutive zeros of the denominator or the function,
choose a test point to determine whether the graph lies above or below the z-axis.

6) Sketch the graph using all the information above.

Example 2.7.7. Sketch a graph of f(z) = (z+2)(@—3)

(x+1)2(x—2)

Solution.
1) The y-intercept is (0, £(0)) =

2) The z-intercepts are found by setting the numerator equal to zero:
(x+2)(x—3)=0
T = or T =

Therefore, the z-intercepts are and

3) The vertical asymptotes are found by setting the denominator equal to zero:
(x+1)%(x—2)=0
r = or r =

Therefore, the vertical asymptotes are and

4) Since the degree of the numerator is less than the degree of the denominator, f has
a horizontal asymptote at
y =

5) To determine whether the graph lies above or below the z-axis in each interval deter-
mined by the vertical asymptotes and z-intercepts, we choose test values:
* For (—oo0,—2), let x = —3, then

(—=3+4+2)(—3—3)

J(=3) = (—3+1)2(—3—2) 0
* For (—2,—1), let z = —1.5, then
_ (-15+2)(-15-3)
f(=15) = (—1.5+1)2(—1.5—2) 0.
* For (—1,2), let z = 0, then
£(0) = (0+2)(0—3) 0.

(0+1)2(0—2)
* For (2,00), let x = 3, then
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_ (34+2)(3-3)
13) = (3+1)2(3—2) 0
Therefore, the graph lies above the z-axis on U , and below

on U

6) Using this information, we can sketch the graph of f as shown below.

Y
4--
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Exercises
]

#’ Exercise 2.7.1. Find asymptotes of the rational function

32 —1
flz) = 2 4+4x—5

Answer: Horizontal asymptote: y = 3. Vertical asymptotes: x =1 and z = —5.

2

#’ Exercise 2.7.2. Find asymptotes of the rational function f(z) = T

Answer: Slant asymptote: y = z — 1. Vertical asymptote: z = —1.
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#/ Exercise 2.7.3. Skefch a graph of the rational function f(z) =

Answer:

876543291+ 1N2345678 7
=2
—3
—4
=5
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2.8 Nonlinear Inequalities

Definition 2.8.1 (Guidelines for Solving Polynomial or Rational Inequalities)

1) Rewrite the inequality in one of the following forms, according to the original inequal-
ity: f(z) >0, f(z) >0, f(z) <0, or f(x) <0.

2) Find all real zeros of f(x).

3) Divide the DOMAIN OF THE FUNCTION (the entire real line if f is a polynomial) into
intervals using the zeros found in the previous step.

4) Choose a test point from each interval to determine the sign of f(x).

5) Identify the solution set as the union of intervals where the test point satisfies the
inequality, and decide whether to include the boundary points.

NG

S

Example 2.8.1. Solve the inequality 2% < 7z — 6.

Solution. Rewrite the inequality as
<0.
To find the zeros of f(z) = 22 — 7z + 6, set f(x) = 0:
22 -T2z +6=0
(x—6)(x—1)=0

Tr = or T =

The zeros divide the real line into three intervals:
(—o0,1), (1,6), and (6,00).
Choose a test point from each interval to determine the sign of f(z):

* For (—o0,1), let z =0, then f(0) =

* For (1,6), let z = 3, then f(3) =

* For (6,00), let z = 7, then f(7) =

Therefore, the solution set is U . J
6x
Example 2.8.2. Solve the inequalit > 1.
|_ P ey T ey

Solution. Rewrite the inequality as

6x
CECES
Let
f@) = e 1= s
(x4 1)(z+2) (4D (z4+2)

We need to find the zeros and the domain of f.

To find the zeros of f(x), set the numerator equal to zero and solve for z:
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—2?2+3x—2=0
(r—1)(x—2)=0

r = or Tr =

To find the domain of f(z), set the denominator equal to zero and solve for z:

(+1)(z+2)=0

r = or T =

The domain of fis

(—o0,—2) U (—2,—1) U (-1, 00).
The zeros divide the domain of f into four intervals:

(—o00,—2), (—2,-1), (—1,1], [1,2] and [2,00).

Note the reason we use square brackets for the last two intervals is that the original
inequality is a “greater than or equal to” inequality. Correspondingly, circles are used for
an open boundary point and solid dots for a closed boundary point in the figure below.

Test values — -3 —1.5 0 3

Y Y
7 7

Zeros — —2 -1 1 2 T
Choose a test point from each interval to determine the sign of f(z):

+ For (—c0,—2), letz = —3, then f(—3) =

* For (—2,—1), letz = —1.5, then f(—1.5) =

* For (—1,1), let z = 0, then f(0) =

* For (2,00), let z = 3, then f(3) =

Therefore, the solution set is U . J

CJ Remark

In the previous examples, note that we determined the sign of f(z) instead of the value
of f(z). This is because we are only interested in whether f(x) is positive, negative, or
zero to solve the inequality.
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Exercises
]

4’ Exercise 2.8.1. Solve the inequality —z2 > 52 — 6.

Answer: (—6,1).

#’ Exercise 2.8.2. Solve the inequality 223 + 22 < 2z + 1.

Answer: (—oo,—1]U [1,00).
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. -1
#’ Exercise 2.8.3. Solve the inequality 1 > z .
2 +1

Answer: (—oco,—2]U (—1,00).

. 8
#’ Exercise 2.8.4. Solve the inequality x2+ 1 <1

xTrc —

Answer: (—oco,—3) U (—2,2) U (4, c0).
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3.1 Exponential Functions

N

Definition 3.1.1 (Exponential Functions)

For any real number z (the exponent), an exponential function f of z is a function
defined by an equation

fx) = b7,

where b is a positive real number, called the base, such that b # 1.

NG

<P Properties of Exponential Functions

Consider the exponential function f(z)=75b", 5T
where b > 0, and b # 1.

x

fl@)=(3)
* The domain of f is (—oo, ), and the range of f decreasing
is (0, 00).

flo)=2°

increasing

* The y-intercept of fis (0, 1), and the function has _— ~
a horizontal asymptote y = 0. 43 9 40l 1 9 3 4 =z

* The function f is increasing if b > 1 or decreas-
ingif0<b<1.

Example 3.1.1. The population of India was about 1.25 billion in the year 2013, with an
annual growth rate of about 1.2%. This situation is represented by the growth function
P(t) = 1.25(1.012)%, where t is the number of years since 2013. To the nearest thousandth,
what will the population of India be in 20317

Solution. In the year 2031, t = 2031 — 2013 = . To find the population after 18 years,
evaluate P att = 18:

P(18) = 1.25(1.012) ~ 1.518 billion.
Thus, to the nearest thousandth, the population of India in 2031 is approximately 1.518
billion.

CJ Remark

When modeling real-world situations with exponential functions, an initial value factor is
often included in the function. A common general form used in applications is:

f(t) = ab’,
where a represents the initial value and b is the base of the exponential growth or decay. If
b > 1, the function models exponential growth; if 0 < b < 1, it models exponential decay.
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|_Example 3.1.2. In 2006, 80 deer were introduced into a wildlife refuge. By 2012, the
population had grown to 180 deer. The population was growing exponentially. Write an
algebraic function N (¢) representing the population N of deer over time ¢.

Solution. Since the population growing exponentially, we can model the population by
the function

N(t) = ab?,
where a is the initial population, and b is the growth factor. Since the initial population is
80 deer, we take a = 80. Thus,

N(t) = 80b*.
To find b, we use the information that after  years (from 2006 to 2012), the popu-
lation is 180 deer. Thus,
180 = N(6) = 80b°.
Solving for b, we get

180
b = —
80
9\ —
b= (-
(3)
b~ 1.144.

Therefore, the population of deer over time ¢ is modeled by the function
N(t) = . J

|_Example 3.1.3. Find an exponential function f(z) = ab® that passes through the points
(—2,6) and (2,1). Round to three decimal places.

Solution. From the given points, we have the system of equations

6 =ab—2
1 = ab?
Dividing the first equation by the second and solving for b gives:
6 _ ab—?
1 ab?
6 =
1
b=
6
1\ ——
b=|{-= ~ 0.638.
(%)
Multiplying the first equation with the second and solving for a gives:
6 = a?
a= ~ 2.449.

Thus, an exponential function that passes through the given points is

(o) = - ]
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F(ample 3.1.4. Find an exponential function f(z) = ab® graphed in the following figure.

Y Solution. Two points are needed to find the values
of a and b. Since the y-interceptis (0, —3), the initial
value is

a =

On the graph, there is another point (1, —6). Substi-
tuting into the equation and solving for z gives:

—6 = —3b!
b= 0=
| | | -3
> 3 4 x Therefore, an equation of the graphed function is
flz) =

Definition 3.1.2 (The Number e)

The natrual number, denoted by e, the number that (1+%)" approaches to as n
increases without bound. Approximately, e ~ 2.718282.

L)
-

Example 3.1.5. Evaluate using a calculator. Round to five decimal places.

1) €2 2) ez 3) e
Solution.
1) e~ 2) et~ 3) " ~ J

@ Investment Models

Let P be the initial amount of the account, known as the principal, » the annual interest
rate, and t is the number of years. The balance A after ¢t years is

© At)=P(1+ ﬁ)m if the interest is compounded n times per year.

« A(t) = Pe™ if the interest is compounded continuously (n — oo).

Example 3.1.6. If $3,000 is invested in a savings account paying 3% interest compounded
quarterly, how much will the account be worth in 10 years?

Solution. Here, P = , T = ,n= ,and ¢t = . Using the formula for
compound interest, we have
0.03\*1°
A(10) = 3000(1 + T) ~
Thus, the account will be worth approximately $ in 10 years. J
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Example 3.1.7. A person invested $1,000 in an account earning 10% per year com-
pounded continuously. How much was in the account at the end of two and a half year?

Solution. Here, P = ,T= ,and ¢t = . Using the formula for continuous

compounding, we have
A(2.5) = 1000e%-1025 »

Thus, the account will be worth approximately $ at the end of two and a half

years. J

Example 3.1.8. A529 Plan is a college-savings plan that allows relatives to invest money
to pay for a child’s future college tuition; the account grows tax-free. Lily wants to set
up a 529 account for her new granddaughter and wants the account to grow to $40, 000
over 18 years. She believes the account will earn 6% compounded semi-annually (twice a
year). To the nearest dollar, how much will Lily need to invest in the account now?

Solution. Here, t = 10, A(10) = T = ,and n = . Using the formula
for compound interest, we have

2:18

4000O:P(1+¥> .

Solving for P, we get

40000
36
(1+248)
Thus, Lily will need to invest approximately $ in the account now. J

@ Continuous Growth/Decay Model

When modeling continuous growth or decay, the number e is usually used as the base
of the exponential function: A(t) = A,e*, where A, is the initial amount and & is the
continuous growth rate (if ¥ > 0) or decay rate (if £ < 0), expressed as a decimal, ¢ is the
time and A(¢) is the amount after time ¢.

Example 3.1.9. Radon-222 decays at a continuous rate of 17.3% per day. How much will
100mg of Radon-222 decay to in 3 days? Round to the nearest hundredth.

Solution. The decay of Radon-222 can be modeled by the function

A(t) = Agert,
where A(t) is the amount remaining after time ¢, A, = is the initial amount, and
k= is the continuous rate of decay (as a negative decimal).

Therefore, the remaining amount after 3 days is given by
A(3) = 100e7 01733 » :
After 3 days, approximately 59.51 mg of Radon-222 will remain. J
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Exercises
]

#/ Exercise 3.11. A vehicle depriciates according to the formula: v = 27500(3.42) %4 where z is
the age of the car in years. Find the value of the car when it is 14-years old.

Answer: v = 27500(3.42)%41 ~ $13812.684.

#/ Exercise 3.1.2. Find an exponential function f(x) = ab® that passes through the points (—2, —6)
and (—1,-3).

Answer: f(z) = ~4(4)" = -3(3)"""

#’ Exercise 3.1.3. Find an exponential function f(z) = ab® graphed in the following figure.

Answer: f(z)=—-3-2%,
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# Exercise 3.1.4. A wolf population is growing exponentially. In 2011, 129 wolves were counted. By
2013, the population had reached 236 wolves. What two points can be used fo derive an exponential
equation modeling this situation? Write the equation representing the population N of wolves over
time t.

t
Answer: N(t) = 129(,/%‘;) ~ 129(1.353)1.

#/ Exercise 3.1.5. A scientist begins with 100 milligrams of a radioactive substance that decays
exponentially. After 35 hours, 50 mg of the substance remains. How many milligrams will remain
after 54 hours?

54
Answer: A(54) = 100(3)* ~ 34.321 mg.
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# Exercise 3.1.6. An account is opened with an initial deposit of $6, 500 and earns 3.6% interest.
1) What will the account be worth in 20 years if the inferest is compounded monthly.

2) What will the account be worth in 20 years if the interest is compounded continuously.

. . 12-20
Answer: 1) A(20) = 6500(1 + 2236)

@ 85 /224 PreCalculus Workbook

~ $13339.43. 2) A(20) = 6500e°-036-20 ~ $13353.82.


https://creativecommons.org/licenses/by-nc-sa/4.0/

Chapter 3 Exponential and Logarithmic Functions
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3.2 Logarithmic Functions

Definition 3.2.1 (Logarithmic Functions)
Let y = b* be an exponential function, where b >

(.

logarithmic function with base b, written as: y =

The notation log, = is read as “log base b of z.” The value of log, z is called the logarithm
of x to the base b, and z is called the argument of the logarithm.

0 and b # 1. Its inverse is called the
log, x.

L]
J

<P Basic Properties of a Logarithmic Function

For b > 0 and b #+ 1, as the functions y = b* and y
1) blogv = gz for z > 0.

log,b=1 and

2) log, (b®) = x for all real numbers z, in particular,

= log, « are inverses of each other, in

particular, y = b* and = = log, y are equivalent equations. Moreover,

log, 1 = 0.

Example 3.2.1. Write the following logarithmic equality in exponential form.

1) logy(z) =3 2) log,(5) =3
Solution.

| Example 3.2.2. Use the exponential form to evaluate the logarithm.
1) log, 4 2) log, V2 3) logy3 4) logs(5)

Solution.

1) log, 4 = log, 22 =

2) logy V2 =1log, 2~ =

3) logg3 =1logg 9 =
)

N

log5(25) logs 5 =

A common logarithm is a logarithm with base 10.

simply as In(x).

Definition 3.2.2 (Common and Natural Logarithms)

A natural logarithm is a logarithm with base e, the natrual number. We write log, (z)

We write log,,(x) simply as log(z).

L]
J
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Example 3.2.3. Evaluate the logarithm without using a calculator.

1) log(1000) 2) In(e?)
Solution.
1) 1og(1000) = log(10—) = 2) In(e?)=__ _J

F(ample 3.2.4. Evaluate the logarithm using a calculator.

1) log?2 2) In2
Solution.
1) log2 ~ 2) n2~ J

<7 Domains and Ranges of Logarithmic Functions

Consider the logarithmic function f(z) = log, z, 4 P
where b > 0and b # 1. 3 increasing
* The domain of f is (0,00), and its range is 2

(—o00, 00). !

* The z-intercept is (1,0), and the function hasa 3 —» 10
vertical asymptote at x = 0. Note that 0 is the
finite boundary of the domain.

f(z) =—3"

* The function f is increasing if b>1 and de- decreasing

creasing if 0 < b < 1.

Example 3.2.5. Find the domain of each function:

1) f(z) = logs(3 — 22) 2) f(z)=log(%)

r—2

Solution.

1) For f(x) = log;(3 — 2x), the domain is determined by:
3—2zx > 0.
Solving the inequality gives: z <

So the domain is: (—oo, ).

2) For f(z) = log(%t}]), the domain is determined by:
z+1 >0
T —2 '

Solve using the test-point method:
* Critical points: z = —1 and z = 2, giving intervals (—oo, —1), (—1,2), and (2, ).
+ Testing each interval shows that the inequality holds over ( ,—1) U (2, ).

Therefore, the domain of fis (—oo, ) U ( , 00). J
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|_Example 3.2.6. Find an equation for the function y = log, x whose graph is shown below.

Y

3--

Solution. Since the logarithmic function has the
form y =log, z, we need to determine the base b.
Use another point on the graph, for example (3,1).

Substituting into the equation and solving for b
gives:

1 =1logy 3

b=3l =
Therefore, the equation of the function is: y =

|

|_Example 3.2.7. Find an equation for the function y = log, (x — a) whose graph is shown

below.

Y

3--

Solution. Two points are needed to determine the
base b and the horizontal shift a. From the graph,
the z-intercept is (2,0), so:

2—a=1

a =

On the graph there is another point (3,1). Substi-
tuting into the equation and solving for b:
1 =1log,(3—1)
b=
Therefore, the equation of the function is: J
Yy = .

|_Example 3.2.8. Find the z-intercept and the vertical asymptote of f(z) = —logs(z + 4)

Solution. The function is obtained by applying a horizontal shift and a vertical reflection
to the basic logarithmic function y = log; z. A vertical reflection preserves vertical lines
and the z-axis, so the z-intercept and vertical asymptote shift accordingly.

Since the z-intercept of y =log;x is (1,0) and its vertical asymptote is z =0, the z-

intercept and vertical asymptote of f(z) = —logs(x + 4) are determined by:
r = r =
Therefore, the z-intercept is ( ,0) and the vertical asymptote is z = . J
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Exercises
]

#’ Exercise 3.2.1. Write the following logarithmic equality in exponential form.

1) log,2 =z 2) logy(z) =2 3) log,(2) =3

Answer: 1) 42=2 2) 32=z 3) 72 =2
#’ Exercise 3.2.2. Evaluate the logarithm using a calculator.

log 5
1) log3 2) In5 3 5

Answer: 1) log3 ~ 047712 2) In5~1.60944 3) 25 ~0.63623
4’ Exercise 3.2.3. Find the domain of the function.

1) f(z) =logy(2z — 1) 2) f(z) =In(9 —4z?) 3) f(z) =log(L)

Answer: 1) Domain: (3,00) 2) Domain: (—2,3) 3) Domain: (—oco,1) U (2, 00)
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4’ Exercise 3.24. Find an equation for the function y = — log, = whose graph is shown below.

Answer: y = —log, z.

#’ Exercise 3.2.5. Find the vertical asymptote of f(z) = —3logy(2x — 1) + 1

Answer: z = 1.
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3.3 Review of Properties of Logarithms

<P Properties of Logarithms

Assume M >0, N >0,b>0and b # 1. Then

Product Rule:

Quotient Rule:

M
log, (F) = log, M — logy N.
Power Rule:
log, (M?) = plog, M,
where p is any real number.

Change-of-base Property:

log
logy, M = —=
©8 log, b’
where a > 0 and a # 1. In particular,
log M In M
log, M = logy M = ——.
8 logd and - log, Inbd
Example 3.3.1. Expand the logarithmic expression.
1) logs(30z(3z + 4)) 2) log(va?+1) 3) 1n(x‘;gy+—1”)
Solution.
1)
logs(30z(3z + 4)) = logs 30 + logs = + logs( )
= logs 3 + log; 10 + logg = + logg 3 + logs (x + 4)
= + logs 10 + logs x + logs (x + 4).
2)
log( x2 + 1) =log (> + 1)
= log(z? +1).
3)
at(y—1) 4

=In(z*) + In(y — 1) — In(2? + 1)
= In(z) + In(y — 1) — In(z? + 1).
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Example 3.3.2. Condense the logarithmic expression.

1) logy(2?) + 1 logy(z — 1) — 3logy((z 4+ 3)?)  2) 3ln(m)—%ln(:c+l)—21n( :c2+3>

Solution.
1)
1
log, (z?) + 3 logy (z — 1) — 3log, ((z + 3)?)
= logy(2?) +log, (z — 1) —logy((z + 3)*?)
2

= log, = )

1 vz —1

= 082 (x+3)8°
2)

3In(x) — %ln(m +1)— 2ln(\/:c2 + 3)

=In(z®) —In(z+1) — ln(( z2 + 3)_>

= In(z?) —ln(\/:v—i—l) — In( )
=In o :
V(z+1)(z2 +3) J
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Exercises
]

#’ Exercise 3.3.1. Expand the logarithmic expression.

1) 6423 (4z + 1) 2) (x —1)(2z +1)2
logs | 3z =1y n (@2 —9)

Answer: 1) 6logg 2+ 3logg z + logg(4z + 1) —logg(2z —1).  2) $In(z —1) 4+ 2In(2z + 1) — In(z — 3) — In(z + 3).
#’ Exercise 3.3.2. Condense the logarithmic expressions.

1) 3log(z) + log(x + 5) — log(2z + 3) 2) 2logx — 4log(x + 5) + 3 log(3z + 5)

Answer: 1) log(z;f:;))- 2) 10%(%:&?)
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3.4 Exponential and Logarithmic Equations

3) Solve the resulting algebraic equation.

Example 3.4.1. Solve

1) 3l =4 2) 2771 =472
Solution.
1) 37l =4 2) ozl _ 422
= log5 4 zr—1=(z—2)
z =logs4— 1. x—1=2(x—2)
z—1=2z+
xr=

| Example 3.4.2. Solve

1) 100 = 20e?t 2) 4e*® +5=12

Solution.
1) 100 = 20e2t 2) 4e?* 4+5=12
— €2t 4€2x —
Inb =
B Inb

t=—.
)
E— 4

94 [ 224

Q Guidelines to Solve Exponential Equations

3)

1) Isolate the exponential expression on one side of the equation.

2) Take the logarithm of both sides—preferably with the same base as the exponential,
but any consistent base (e.g., common log or natural log) may be used.

3) 5542 = 4°
3) 5T+2 _ 4@
Ins5(x+2)=2
zln5+ = =uzxIn4
x( )=—2In5
—2Inb

T= IHS_IHU

3) e?* —e® =56

e?® — e* = 56

(e%)? — e —56 =0

(e —=8)(e*+  )=0
e* —8=0ore*+7=0

x

et = or no solution

xr=
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Q Guidelines to Solve Logarithmic Equations

1) Isolate the logarithmic expression (use log properties if needed).

)
2) Exponentiate both sides using the logarithm's base.
3) Solve the resulting equation.
4) Check solutions in the original equation—discard any outside the domain of the

logarithms.

Example 3.4.3. Solve

1) 2lnz+3=7 2) In(z?) = In(2z + 3) 3) In(z) —In(z+3) =1In6
Solution.
1
) 2lInx+3=17
2Inx =
Inz =
Tr =
Check: Because z = ¢? > 0 is in the domain of the original equation. So, z = ¢? is a
solution.
2)
In(z?) = In(2z + 3)
22 =22 +3
2 -2 —-3=0
(. )z+1)=0
r—3=0 or z+1=0
r = or I =

When z =3, both z2 =9 >0and 2z +3 =9 > 0. So, z = 3 is a solution.
Whenz = —1, bothz2 =1and 2z + 3 = > 0. S0, x = —1 is also a solution.

3) In(z) —In(z +3) =1n6
X
ln(x " 3) =1n6
X
z+3 -
x =6(x+3)
—dx =
r =
Check: Since z = —% < 0is notin the domain of Inz, it is an extraneous solution and
must be discarded. The equation has no solution. J
95 /224 PreCalculus Workbook


https://creativecommons.org/licenses/by-nc-sa/4.0/

Chapter 3 Exponential and Logarithmic Functions 3.4 Exponential and Logarithmic Equations

Example 3.4.4. An account with an initial deposit of $6,500 earns 7.25% annual interest,
compounded monthly. After how many years, the balance will be doubled. Round your
answer to the nearest hundredth.

Solution. Let A(t) be the amountin the account after ¢t years. Using the compound interest
formula:

072 12t
A(t) = 6500 14 2072
12
The number of years it takes to double the balance satisfies:
12t
= 6500(1 + 00725) .

Divide by 6500 and solve for ¢:

0795\ 12
5 _ <1+007 5)

12
0.0725
( )log<1+ 12 ) = log 2
t= ~ 9.59.
Therefore, it will take approximately 9.59 years for the balance to double. J

|_Example 3.4.5. The magnitude M of an earthquake is represented by the equation
2 E
M=-1 —

3 "g(Eo)’

where E is the amount of energy released by the earthquake in joules, and E, = 10*8
is the assigned minimal measure released by an earthquake. To the nearest hundredth,
if the magnitude of an earthquake is 7.8, how much energy was released? Answer with
exact value in scientific notation.

Solution. Substituting M = 7.8 into the equation gives:

2 E
7.8 = glog<104'8).

Solve for E and simplify the answer:

E
log 104.8 -

=100

&=

104-8
E=107"".
Therefore, the amount of energy released by the earthquake is approximately 1065

joules. J
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Exercises

4’ Exercise 3.41. Solve

1) 377 =5 2) 3572 =42 3) 5=10%"2 4) €2 —2¢% =15

Answer: 1) z=1-1logs5 2) == ppigre; 3) t=yicis 4) z=In5
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#/ Exercise 3.42. Solve

1) 2logr —3=—1

2) In(22?) = In(5z + 3)

3) 1log,(3z—1) =2

4) In(z—1)—In(z+1) =1

Answer: 1) z=10 2) =3 3) z=5 4) nosolution
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#/ Exercise 3.43. An account with an initial deposit of $8,200 earns 6.4% annual interest,
compounded quarterly. After how many years will the balance be tripled? Round your answer to the
nearest hundredth.

Answer: Approximately 17.3 years.

#’ Exercise 3.44. The loudness L of a sound in decibels is given by

1
L= 1010g(1—),
0

where I is the sound intensity (in watts per square meter) and I, = 10712 is the reference intensity.

To the nearest hundredth, if a sound has a loudness of 95 decibels, what is its infensity I? Give the
exact value in scientific notation.

Answer: 10~2° watts per square meter.
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3.5 Exponential and Logarithmic Models

@ Exponential Growth and Decay

Recall that the function

A(t) = Age®  or equivalently A(t) = Ayb
is commonly used to model exponential growth (when k& > 0 or b > 1) or decay (when k <
0or0<b< 1), where A, is the initial quantity.

Example 3.5.1. A population of bacteria doubles every hour. A culture started with 10
bacteria.

1) After 6 hours how many bacteria will there be?

2) After how many hours will the population be tripled? Round your answer to the
nearest hundredth.

Solution. The initial population is 10 bacteria, so the population after ¢ hours can be
modeled by:

P(t) = 100",
Since the population doubles every hour:
b = w =
pPO) —

Thus, the population after ¢ hours is:

1) After 6 hours:

2) The time t needed to triple the population satisfies:

= 102¢.
Solve for t:
3=2¢
logd=
t= =~ 1.58.
Therefore, it will take approximately 1.58 hours for the population to triple. J

Example 3.5.2. The half-life of carbon-14 is 5,730 years. Laboratory analysis shows that
a bone fragment currently contains 20% of the carbon-14 that a living organism would
have had. Estimate the age of the bone to the nearest year.

Solution. Let A(t) be the amount of carbon-14 remaining after ¢ years. By the exponential
decay formula:
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Since the half-life of carbon-14 is 5, 730 years, k satisfies
1
5140 — A06573Ok_

Divide by A, and solve for k:

k=

5730 °
Thus, the model is:

(%) ; n(3) 5730 1 5730
A(t) = Agemint = Ay (nD) 7 = 4, (5) |
The age ¢ of the bone fragment when 20% of the original carbon-14 remains satisfies:

1\ 5730
A0:A0<§) .

Divide by A, and solve for ¢:

t= ~ 13305.

Therefore, the bone fragment is approximately 13305 years old. J

() Remark

In the previous example, we could have also used the formula

where h is the half-life of the substance.

Example 3.5.3. Sam goes to the doctor and the doctor gives him 15 milligrams of
radioactive dye. After 15 minutes, 9 milligrams of dye remain in Sam body. To leave the
doctor’s office, Sam must pass through a radiation detector that will sound the alarm if
more than 2 milligrams of the dye are in his body. How long Sam'’s visit to the doctor
take, assuming he was given the dye as soon as he arrived? Round your answer to the
nearest minute.

Solution. Let A(t) be the amount of dye remaining in Sam’s body after ¢ minutes. By the
exponential decay formula:

A(t) = ekt.
Since 9 milligrams remain after 15 minutes, the decay constant k satisfies:
9 = 15e1%%.
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Solve for k:

k=
Thus, the model is:
(d),
A(t) = 15e715
The time that Sam’s visit will take satisfies:
(3
= 15e¥t.
Solve for t again:
3 B elngé)t
15
(ln(%)
t =
15 _
t= ~ 59.17.
Therefore, Sam’s visit will take approximately 59.17 minutes. J

@ Newton's Law of Cooling

The temperature of an object, T, in surrounding air with constant temperature T, will

behave according to the formula
T(t) = AeF* +T,,

where t is time, A is the difference between the initial temperature of the object and the
surroundings, k is a constant, the continuous rate of cooling of the object.

Example 3.5.4. A cheesecake is taken out of the oven with an ideal internal temperature
of 165°F, and is placed into a 35°F refrigerator. After 10 minutes, the cheesecake has
cooled to 150°F. If we must wait until the cheesecake has cooled to 70°F before we eat it,

how long will we have to wait?

Solution.

Let T'(t) be the temperature of the cheesecake after ¢ minutes. By Newton’s Law of

Cooling: T(t) = Aelt 4 T,

where T, = 35°F is the surrounding temperature and A = 165 — 35 =

Thus, the temperature after ¢ minutes is:
T(t) = 130e** + 35.
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Since the temperature drops to 150°F after 10 minute, the constant & satisfies:

150 = 130e10% + 35.
Solve for k:
115 = 130e10F

elOk

23
26

()
=lIn| —
26

k=

So the temperature after ¢ minutes is:

ln(%)

T(t) =130e 10 * + 35.

The time it takes the cheesecake to cool to 70°F satisfies:

m(38),
70 = 130e 10 * + 35.
Solve for t:
In ?
— 130e 5),
ltl(lz()—g)t . l
€ ~ 26

t= ~ 107.03.

Therefore, we must wait approximately 107.03 minutes for the cheesecake to cool to 70°ﬂ
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@ Logistic Growth

The logistic growth model behaves approximately exponentially at first, but its growth
rate decreases as the population approaches an upper limit called the carrying capacity.

The population at time ¢ is modeled by
P(t)

o C
14 ge b’
where a, b, and ¢ are positive constants with the following interpretations:

* cis the carrying capacity—the value that P(t) approaches as t — oc;
* bis the growth rate;

* ais determined by the initial population, specifically
_c—P(0)
~ P(0)

Example 3.5.5. The equation

500
N =5 + 49¢—0-7t

models the number of people in a small town who have heard a rumor after ¢ days.
1) What's the population of the small town?
2) How many people started the rumor?

3) To the nearest whole number, how many people will have heard the rumor after 3
days?

4) How many days will it take for 100 people to hear the rumor?
Solution.

1) Whent — 00, e %" — 0 and

500
—- = .
I+

N(t)

Therefore, the population of the small town is 500 people.

2) The number of people who started the rumor is given by:

500 500
N = = = .
(0) 1 + 490 —_—
3) After 3 days:
500 500
N(3) = - ~
(3) 1449 07(__) 1+ 49e21

Therefore, approximately 71 people will have heard the rumor after 3 days.

4) The time ¢ it takes for 100 people to hear the rumor satisfies:
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500
100 = T— o7
Solve for t:
1 1
5 1+49¢ 07t
14 49¢7 07 =
0.7t _
=In i)
— 49
‘o In %) -
0.7

Therefore, it will take approximately 4 days for 100 people to hear the rumor. |
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Exercises

#/ Exercise 3.5.1. A bacteria culture initially contains 3000 bacteria and doubles every half hour.
Find the size of the bacteria population after 80 minutes.

Answer: Approximately 19049 bacteria.

4’ Exercise 3.5.2. The half-life of tritium-3 is 12.25 years. How long would it take the sample to
decay to 20% of its original amount? Round your answer to the nearest hundredth.

Answer: Approximately 28.44 years.
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#’ Exercise 3.5.3. A doctor prescribes 125 milligrams of a therapeutic drug that decays by about
30% each hour.

1) To the nearest hour, what is the half-life of the drug?

2) To the nearest hundredth hours, how long would it take the drug to decay to 30% of its original
amount.

Answer: 1) Approximately 2 hours. 2) Approximately 3.38 hours.

#’ Exercise 3.54. A cup of coffee at 185°F is placed into a 60°F room. One hour later, the
temperature of coffee has dropped to 120°F. How long will it take for the femperature to drop to
80°F? Round your answer to the nearest minute.

Answer: Approximately 150 minutes.
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#’ Exercise 3.5.5. The population of a fish farm in t years is modeled by the equation
1000

Plt) = ——.
(*) 1+ 9¢—0.6t

1) What is the initial population of fish?
2) What is the carrying capacity for the fish population?
3) To the nearest tenth, what is the doubling time for the fish population?

Answer: 1) The initial population is 100 fish. 2) The carrying capacity is 1000 fish. 3) Approximately 1.4 years.
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4.1 Review on Angles

Definition 4.1.1 (Angles and Measurements)

An angle is the union of two rays that share a common endpoint. This endpoint is the
vertex, and the rays are the sides of the angle.

An angle can be formed by rotating a ray around its endpoint. The starting ray is the
initial side, and the ending ray is the terminal side.

The measure of an angle is the amount of rotation from the initial side to the terminal
side. A counterclockwise rotation produces a positive angle, while a clockwise rotation
produces a negative angle.

One degree represents - of a full counterclockwise rotation.

One radian is the measure of a central angle whose intercepted arc length equals the
radius of the circle.

Conversion Factor: A half revolution, 180°, is equivalent to = radians:
180°

180° = 7 radians, or 1= ———
7 radians

where 7 ~ 3.14159.

An angle is in standard position when its vertex is at the origin and its initial side lies
along the positive z-axis.

A Positive Angle of 40° in Standard Position A Negative Angle of —120° in Standard Position
Yy Y
A & A
4\0’0\5 initial sidg_ .
K o — a0 3
N a =40 S

a =—120°

Y] —= 1
initial sidé

A central angle is an angle whose vertex is at the center of a circle.

i i i A Central Angle of 2T radians = 150°
An arc is any portion of a circle. 9 ¢ radians

A sector is a region enclosed by two radii
and the arc between them.

a = 2% radians

The length of an entire circle is its circum-
ference. The length of an arc is called its
arc length. The area of a sector is called its
sector area.

L]
A J
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Example 4.1.1. Convert each radian measure to degrees and each degree measure to
radians.

1) 2) 2 3) 36° 4) 150°

Solution.

1) z - g ) 1800 1800 3) 36° = 36° - m 4) 1500 = 1500 .

2) 9—9.

T _

-

Definition 4.1.2 (Coterminal and Reference Angles)
Coterminal angles are angles in standard position that share the same terminal side.

The reference angle of an angle in the standard position is the acute angle (between 0
and %, or 0° and 90°) formed by the terminal side of the angle and the positive or negative
side of the z-axis.

The following figure illustrates coterminal angles and reference angles, where « and g
are coterminal angles, and o, and 3, are their reference angles.

Qpet = ﬂref =45°=7

B =—225°

NG

Example 4.1.2. Find a coterminal angle a:such that 0° < a < 360° and the reference angle
g for the angle 6 = —45°.

Solution. To find the coterminal angle and the reference angle, it is better to draw a
figure first.
Y From the figure, the coterminal angle is
a = 360°+ 0 = 360° — 45° =
The reference angle is

f=—a=

3
>

R

§ = —45°

|
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Example 4.1.3. Find a coterminal angle « such that 0 < a < 27 and the reference angle
B for the angle § = 1=,

Solution. To find the coterminal angle and the reference angle, it is better to draw a
figure first.

Yy Because 495 = LT > 27, we need to subtract
1 27 to find the coterminal angle a: From the
figure, the coterminal angle is
117

Oé:495—27T=T—27T:

From the figure, the reference angle is
/6 =T - =T — =

X7 Formulas for Arc Length and Sector Area
Let 6 be the radian measure of a central angle in a circle of radius r.

* The arc length s of the angle is
s=rb.

* The sector area A enclosed by the angle and the arc is

1
A = 57’29.

Example 4.1.4. Find the arclength of a central angle of 215 degrees in a circle of radius 10.

Solution. To find the arc length, we first convert the angle measure from degrees to
radians:

T
6 =215°- =
5 180°

Then, we use the arc length formula to find the arc length:
s=r0=10- = . J

anmple 4.1.5. Find the sector area of a central angle of 150 degree in a circle of radius 12.

Solution. To find the sector area, we first convert the angle measure from degrees to
radians:

T
6 = 150° - =
180°
Then, we use the sector area formula to find the sector area:
1 1
2 2
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Exercises

Find a coterminal angle « in degrees such that 0° < a < 360° and the reference angle g in
radians for the given angle.

1) 6=-120° 2) 6 =400° 3) =1 4) 0=

Answer: 1) a=4,8=% 2) a=%,3=2" 3) a=%3,=% 4) a=3,5=7%

#’ Exercise 41.1. A central angle in a circle of radius 3 is measure 120°. Find the arc length on
the circle and the sector area in the circle that are determined by the angle.

Answer: Arc length: 2. Sector area: 3.
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4.2 Trigonometric Functions of Arbitrary Angles

Definition 4.2.1 (Trigonometric Functions of Arbitrary Angles)

Let # be a angle in the standard position and P(z,y) is a point on the terminal side.
Denote by r the distance between P and the origin O. Then r = \/z2 + y2.

The trigonometric functions of the angle 0 are defined as follows.

Yy
Sine sinf = 2
r
)‘0
4y —
Cosine cost = — BT 2
r g
sinf vy 3
Tangent tanf = == =
cosf =z < @
0 1 r A
cscf=—— = — Y =
Cosecant snf g Q ] >
0(070) L =TCOSC 1
1 r Tsec !
Secant sec = = —
cosf =z
Cot t = =7
cot 0 = = —
otangen tand g
_ Y

() Note on Undefined Trigonometric Functions

In the above definitions, some trigonometric functions may be undefined for certain
angles. For example, if the terminal side of angle 6 lies along the y-axis, then x = 0 and
both tan # and sec § are undefined. Similarly, if the terminal side of angle 6 lies along the
z-axis, then y = 0 and both cot § and csc § are undefined.

@ Polar Coordinate System

The definitions of the trigonometric functions above induce a coordinate system called
the polar coordinate system. In this system, a point P in the plane is represented by
an ordered pair (r, 6), where r is the distance from the origin to the point P, and 6 is the
angle formed by the positive z-axis and the line segment from the origin to the point
P. The value of r can be positive, or zero. For a point P with polar coordinates (r,0), its
rectangular coordinates (z,y) can be found using the formulas

x =rcosf

y = rsin6.
In particular, if P is a point on the unit circle, that is the circle centered at the origin with
the radius r = 1, then siné = y and cos 0 = .
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Example 4.2.1. Find the EXACT VALUES of all six trigonometric functions of the central

angle # whose terminal side passes through the point <—%, —@) on the unit circle.

Solution. Since the point is on the unit circle, we have r = 1. Using the definitions of the
trigonometric functions, we have

: _V3
sinHz—ﬁ cos@z—1 tanf = sm0: 2 —
2 2 cos 6 —% e
1 1 1
¢ sinf — Sec cos§ — €0 tan — J

Example 4.2.2. Find the EXACT VALUES of all six trigonometric functions of the angle 6
in the standard position whose terminal side passes through the point (—3, —4).

Solution. By Pythagorean identity, the distance from the point to the origin is
r=+/ 24 2=V25= -
Using the definitions of the trigonometric functions, we have
sinf = cosf = tan 6 =

cscl = secl = cotf = J

Example 4.2.3. The terminal side of an angle 6 in the standard position is in the third
quadrant and the y-coordinate of the intersection of the terminal side with the unit circle
is —‘/75. Find the z-coordinate of the point of intersection and then find the EXACT VALUES
of all six trigonometric functions of the angle 6.

Solution. Since the point is on the unit circle, we have r = 1. Using the Pythagorean

Theorem, we have
2
2
z? + (_§> =12,

2 =1-— =

—:E\/T—zl:
T = — =
2 2

Since the terminal side of the angle is in the third quadrant, where both z- and y-coordi-
nates are negative, we have

which gives

Thus,

xTr =

Therefore, the point of intersection is (—%,—*/75). Using the definitions of the trigono-

metric functions, we have
sinf = cosf = tanf =

cscl = secl = cotf = J
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Example 4.2.4. Simplify the expression using the definition of trigonometric functions.

1) sl 2) tantcsct

Solution. Let P(xz,y) be a point on the terminal side of angle 6 or t and r is the distance
from P to the origin. By definition, we have

1) sech r 2) tantcsct = : =
tanf [T — _J

X7 Pythagorean Identities of Trigonometric Functions

For any angle 6, the following identities hold:
sin? 0 + cos? 0 =1
1+ tan? 0 = sec? @
1+ cot?0 = csc? @

Example 4.2.5. Given thatsect = —3 and 0 < ¢ < , find the EXACT VALUES of the other
five trigonometric functions.

Solution. (Using Pythagorean Identities). Since sect = —1, we have cost = —Z. Using the

Pythagorean identity sin? ¢ + cos?t = 1, we have
8 2
sin“t -+ 17 ,
which gives

sin?t=1—

int = +£4/ 225 +
sint = — =
289 17

Since 0 < t < w, where the sine function is positive, we have

Thus,

sint =
Therefore, we have
sint
tant = = = ,
cost  —
1
csct = — = ,
sint —_—
1
cott = = .
tant —_—
Solution. (Using the Definition). Since sect = —i, we have £ = —iI. Consider the point

(—8,y) such that r = 17. Since 0 < t < w, we have y > 0. Using the Pythagorean Theorem,
we have

@ 115/ 224 PreCalculus Workbook


https://creativecommons.org/licenses/by-nc-sa/4.0/

Chapter 4 Trigonometric Functions 4.2 Trigonometric Functions of Arbitrary Angles

y=Vir—@ = P )=

Therefore, we have

. Yy
A sint = = = ,
(—8,15) r  —
T
cost = — = ,
A t r o —
\ tant sint
an = = =
> T cost S
1
csct = —— = ,
sint ———
1

@ Evaluate Trigonometric Functions using Reference Angles

To evaluate the trigonometric functions of an angle 6 in standard position, we can use the
reference angle 6, and the signs of the trigonometric functions in the quadrant where
the terminal side of the angle 4 lies.

For example, if the terminal side of angle @ is in the second quadrant, then
sin @ = sin §,; = sin(7m — ), cos @ = —cos @, = —cos(m — 6)

Example 4.2.6. Use the reference angle to find the EXACT VALUES of all six trigonometric
functions of 27

Solution. Let 6 be the angle measured 2%. Then the terminal side of the angle 6 is in the
second quadrant, the reference angle is

5T
0.of = —0=m— 3 = )
Therefore,
sinf = sin 0, ; = ,
y —
A cosf = —cos b, = ,
sin 0
us tu 0 == = = ,
9="5F an cos @ S
eref = % \ . p 1 1
> cscl = = =
sin 6 S
1 1
0 = = —
Sec cos 6 —
1
cotf = =
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Q Left-Hand Trick for Trigonometric Functions of Special Angles

To remember the sine and cosine values of the special angles 0, § = 30°, 7 = 45°, § = 60°,
and 7 = 90°, use your hand as follows:

\/figures on the right (or below)
2

siné =
= /2

cosé =

* Hold your left hand in front of you with
your palm facing you and fingers spread
apart.

* Label your thumb as 7, index finger as Z,
middle finger as %, ring finger as %, and
pinky as 0. The angles increase counter-
clockwise from the pinky to the thumb.

* For a given angle 6, bend the finger corre-

sponding to that angle.

\/figures on the left (or above)

+ To find sine of an angle 6, count the fingers to the right of (or below) the bent finger:

_ \/fingers on the right (or below)
6= :
sin 5

+ To find cosine of an angle 6, count the fingers to the left of (or above) the bent finger:

V/fingers on the left (or above)
cosf = 5 .

Example 4.2.7. Use the hand trick to find the EXACT VALUES of sin § and cos Z.

Solution. Bend the index finger to represent the angle %.

There are fingers to the right of the bent finger. Thus,
sinZ = .
3 2
There are fingers to the left of the bent finger. Thus,
COS% = T J

<7 Symmetries of Trigonometric Functions

The trigonometric functions have the following symmetries.

» Cosine and secant are even functions:
cos(—0) = cos 0 sec(—0) = sec6.

* Sine, tangent, cosecant, and cotangent are odd functions:
sin(—f) = —sin6 tan(—0) = —tan@ csc(—0) = —csc b cot(—6) = —cot 6
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Example 4.2.8. Find all six trigonometric functions of the angle —120° using the symme-
tries of trigonometric functions.

Solution. By symmetry and the reference angle method, we have
sin(—120°) = —sin 120° = —(sin 60°) = ,

cos(—120°) = cos 120° = — cos 60° = ,

tan(—120°) = :

csc(—120°) = :

sec(—120°) = )

cot(—120°) =

Definition 4.2.2 (Periodic Function)

A function f is called a periodic function if there is number p such that f(z + p) = f(z)
for all z. The smalled positive number p such that f(z + p) = f(x) for all z is called the
period of the function f. .

X7 Periods of Trigonometric Functions
The period of the cosine, sine, secant, and cosecant functions is 2.

The period of the tangent and cotangent functions is .

Example 4.2.9. Find the EXACT Values of the six trigonometric functions of the angle § =
7= using the periodicity of trigonometric functions.

Solution. Since I = 2r + Z, by periodicity, we have

0T . (2 +7r> .om
sin— =sin( 27+ — | =sin— =
3 3 ’

3

CcoS i cos (2 + ﬂ) cos

—_— = i —_ = —_ =

3 3 3
T T T

tan—ztan(27r+—> = tan — = ,
3 3 3
e ( 77) T

csc— =csc|2mr+ = | =csc— = ,
3 3 3 —
T ( 77) T

sec— =sec|2mr+ — | =sec— = ,
3 3 3
7T T T

cot — = cot (27r + —) = cot —

3 3

= ) J
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Exercises
]

#’ Exercise 4.2.1. Find the coordinates of the point on the unit circle and the terminal side of the
given angle. Show your answer in exact form.

1) 6 =225° 2) §=2¢ 3) g=Ur

Answer: 1) (—@,—72) 2) (_§7§) 3) (@,—é)

#’ Exercise 4.2.2. Find all six trigonometric functions of the angle in the standard position whose
terminal side passing through the given point. Show your answer in exact form.

D (F.-3) 2) (—1,2)

1) sinf = —1, cosf = @,tan@z—@ csch = —2,secl = % = %,cotﬂz—\/?;

2 3
% = %,cos@z —% :—g,tanO: —2,csc = X2 sec = —/5,cotf = -1
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#’ Exercise 423. Given that tanf = —2 and —5 < 0 < g, find the EXACT VALUES of the other
five tfrigonometric functions. Show your answer in exact form.

Answer: sinf = f% = 725—‘/5,0030 = % = g,cscﬁ = fg,secﬂ =5, cotf = —3
# Exercise 4.2.4. Simplify the expression.
1) cwoté 2) sec@tanfcos?6

csc O

Answer: 1) cosf 2) sinf
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# Exercise 4.2.5. Find all six trigonometric functions of each angle. Show your answer in exact form.

) A=4 2) B=-2¢ 3) C=750°

1) sind = —@,cosAz —%,tanA: V3,cscA=—2% = 2V3 Sec A = —2,cotA=-L = v3

V3~ 3 V3 3
Answer: 2) SinB:—%,cosB:—%ﬁ,tanB: @,cseBz—2,secB:—%=—¥,cotB= V3
3) sinC’:%,cosC’:?,tanC’:?,CSCC:lsecC:%z%,cotC:\/?;
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4.3 Right Triangle Trigonometry

P Trigonometric Functions Associated to a Right Triangle

Given a right triangle with an acute angle 6, the six trigonometric functions and lengths
of the sides are related as follows:

. Opp Adj Opp
Q sinf = —— cosf = — tanf = ——
/ on fip fip A
Hyp Hyp Adj
0 o= 2> g =—" £0 = —
A r CSC Opp sSecC AdJ CO Opp

d]

Example 4.3.1. In triangle A ABC, if ZC = 90°, AB = 19 cm and £ZB = 23°, determine the
length of AC and the length of BC to the nearest tenth of a centimeter.

Solution. . . .
The length AC and the trigonometric functions of ZB are
related as follows:,
AC
in/B=—
sin 1B’
4 which gives
M AC = (AB) -sin /B = 19 - sin 23° = cm .
23° Also,
B C
BC
/B=—"=
cos 1B’
which gives
BC = (AB) -cos ZB =19 - c0s23° = cm . J

F(ample 4.3.2. Find sides b and c in the following right triangle.

< b
24°

a=>5

Solution. Let 0 be the angle opposite to side b. Then, we have 6 = 24°. The sides a, b and
c in the right triangle are related to the trigonometric functions of angle 6 as follows:
tanf = 9, and secf = <
a a
b=a-tanf =5-tan24° = ,

c=a-sech =5 sec24° = . J
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@ Angle of elevation or depression

The angle of elevation is the angle formed by the horizontal
line and the line of sight to an object above the horizontal line.

angle of depression

The angle of depression is the angle formed by the horizontal

. . . . . . angle of elevation
line and the line of sight to an object below the horizontal line.

Example 4.3.3. The angle of elevation to the top of a tall tree is 55° when measured at a
point 30 feet from the base. Assume the ground is flat. How tall is the tree?

Solution. .
Let h be the height of the tree. Then, we have

tan 55° = ———

an 30 y

L which gives
h =30 -tan55° = feet.
55°
-

30 ft J

Example 4.3.4. A lighthouse stands 200 feet above sea level. From the top of the light-
house, a boat is observed at an angle of depression of 15°. Assuming the sea surface is
flat and horizontal and the lighthouse is perpendicular to the sea surface, how far is the
boat from the top of the lighthouse?

Solution. Let L be the top of the lighthouse, B be the position
of the boat, and O be the intersection of the perpen-
dicular lines through L and B, as shown in the figure
on the left. Then

LO =200 feet, and ZBLF = 15°.

Because ZOBL and ZBLF are alternate interior an-

L F gles, we have ZOBL = 15°. Therefore, the distance
& 15° LB from the top of the lighthouse to the boat and the
5 5 sealevel trigonometric functions of angle ZOLB are related as
0 B follows:

in15° = =————
sin e

Solving for LB, we get the distance from the top to
the lighthouse to the boat is

200
ILB=—— = feet.
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Example 4.3.5. To estimate the height of a building, two measurements are taken. The
first measurement shows an angle of elevation to the top of the building as 51°. The
second measurement, taken 50 feet closer to the base of the building, yields an angle of
elevation of 77°. From the measurements, estimate the height of the building. Round to

the nearest foot.

Solution. Let T be the top of the building, B be the base of
the building, and F and S be the first and the second
T observation points, as shown in the figure on the left.
From the definition the tangent function, we have the
following equations:
tanb1° = %, tan 77° = g—ﬁ,and FB — SB = 50 feet.
Solving for FB and SB in terms of TB and plugging
them in to the third equation induces an equation in one
variable T'B as follows:

TB TB
— = 50 feet.

Solving for T B, we get the height of the building is

TB = 50 = feet.

11
tan51° tan 77° J

<P Cofunction Identities

Given an angle # measured in radians, we have the following cofunction identities.

- . Reasoning: If 6 is an acute angle in a

Sin(§ — 9) = cosf 080(5 — 9) =secf  right triangle, then Z — 6 is the other acute

angle in the triangle. Therefore, these iden-

COS(% _ 9) —sind Sec(g _ 9) _cscf tities can be interpreted using right triangle
trigonometry.

tan(% — 9) = cot f cot(% — 9) = tan In general, this identities can be obtained
using the reference angle method.

Example 4.3.6. Ifsint = % and 0 <t < %, find tan(§ — ¢t).

Solution. By the cofunction identity, we have

™ cost
tan(——t) =cott = —.
2 sint
Because 0 < t < %, by the Pythagorean iden-  Thus, we have
tity, s cost 5
tan(T o) =2
2 sint

cost:mzwl—(f—?’>2:_. J
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Exercises
]

#’ Exercise 4.3.1. Find all frigonometric functions of the angle 6 in the right triangle given below.

C
1 24/10
0
A 9 B
Answer: 31n9—2‘(,c030— ,tanG:QTm,cscoﬁ?:%: llgf)ﬁ,secé?:%,cot@:%—%go.

#’ Exercise 4.3.2. Find sinf, cosd and tan @ of the angle 6 given in the figure.

c 2) c 3) c
7
1 10 5
//’J //I //I
A B A 5 B A 8 B

1) sm0— 2. cosf = 2F ,tanf = f’
Answer: 2) sinf = 2‘f ,cosf = 2 tanf = ‘—f

3) sinf = %,c030 = %,tan@ = g
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4 Exercise 4.3.3. Find sides a and b in the following right triangle (round to the nearest thousandth).

Answer: a = 6.62, b = 8.785.
#’ Exercise 4.3.4. Find sides a and c in the following right triangle (round fo the nearest thousandth).

C

41°
A b=11 B

Answer: a = 9.562, c = 14.575.
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#’ Exercise 43.5. In triangle A ABC, if ZC =90°, AC =52cm and ZB = 37°, defermine the
length of AB and the length of BC to the nearest tenth of a cenfimeter.

Answer: AB = 86.4cm, BC =69 cm.

#’ Exercise 43.6. A hot air balloon hovers above the ground at a height of 1000 feet. A person
on the ground sees the balloon at an angle of elevation of 27°. What is the distance between the
balloon and the person? (Round to the nearest foot.)

Answer: 2203 feet.
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#’ Exercise 43.7. A jet takes off at a 20° angle. The runway from takeoff is 800 meters long. What
is the altitude of the airplane when it flies over the end of the runway? (Round to the nearest tenth
of a meter)

Answer: 291.2 meters.

1

#’ Exercise 4.3.8. If cosa = 13. find the possible values of cos(§ — a).

2

Answer: cos(3 —a) = i%
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4.4 Graphs of Sine and Cosine

4.4 Graphs of Sine and Cosine

<P Properties of Standard Sine and Cosine Functions: y = sinz and y = cos z

The functions y =sinz and y = cosz are called the standard sine function and the
standard cosine function, respectively.

Y
2 +
Yy =Ccosx
—27 —37 —NE— 5 ] 5 T 37” 2m z
y =sinx
—92 4+

In the following, k is any integer.

Properties of y = sinx

y-intercept: (0,0)
z-intercepts: (km,0).
Global (and local) maximum:
. s
1= sm(2k7r + 5)

Global (and local) minimum:
1 =si (2k - 77)
= sin T 5 .

Symmetric with respect to the vertical
line z = kr + 7

sin(lmr + g +ac) = sin(k7r+ g —m).

Symmetric with respect to the intersec-

tion points (kx, 0) with the midline:
sin(kr + x) = —sin(km — x).

In particular, y = sinz is an odd function.

Common Properties of y = sinz and y = cosx
Both functions are periodic with the period of 2w, domain (—, c0), and range [—1, 1].

Properties of y = cosx

y-intercept: (0,1)
z-intercepts: (knr + g, 0).

Global (and local) maximum:
1 = cos(2km).

Global (and local) minimum:
—1 = cos(2km + ).

Symmetric with respect to the vertical
line x = km:

cos(km + x) = cos(km — x).
In particular, y = cosz is an even func-
tion.

Symmetric with respect to the intersec-

tion points (kx + Z,0) with the midline:
s T
cos(lmr—i— 5 +x) = —cos(lm+ 5 a:)

L] Relationship between Sine and Cosine Functions

By the symmetry of the cosine function and the cofunction identity, we have

cosz = cos(—x) = sin(g — (—x)) = sin(:c + g)
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Definition 4.4.1 (Sinusoidal Functions and Their Characteristics)

A sinusoidal function is a function f defined by f(z) = Asin(Bxz —C)+ D or f(z) =
Acos(Bx — C) + D. They have the following characteristics:

« The midline is the horizontal axis of oscillation: y = D, where D is the average of the
maximum and minimum values of f.

* The amplitude is the maximum vertical displacement from the midline, given by |A|,
which also equals M where f, .. and f_. are the maximum and minimum of f.

« The period T is the smallest positive horizontal distance for one complete cycle,

starting at the midline, passing through a maximum, then a minimum, and returning

to the midline, such that f(z + T) = f(z). Itis calculated as T = ‘%r'.

The period is also the distance between two consecutive maximums or two consecutive
minimums or twice the distance of two consecutive midline crossings.

* The phase shift* = is the horizontal shift (with in a period) relative to the standard
sinusoidal function and given by 7 = &

.
f(x)=Asin(Bx -C) +

y 727

fmax=|A|+ IBI

Midline: y =

fmin = _lAl +

* General sinusoidal functions have symmetries similar to the standard ones. .
- /

Example 4.4.1. Determine the midline, amplitude, period, and phase shift of the function
y =3sin(2z — §) + 1.

Solution. Compare the function to the standard form y = Asin(Bx — C) + D, we have
A=3 B=2, C:g, and D=1.

Thus, we can determine the characteristics as follows:

Midline: y = Amplitude:

Period: __ 2T _ Phase Shift;

D — J

*In general, a phase shift of f relative to g with the same period is a value 7 such that f(z) = Ag(z + 7) +
D for all z in the domain of f. Be careful, in Physics, the term “phase shift” may have a different meaning.
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Example 4.4.2. Consider the function y = —2cos(5« + 7) + 3, determine the amplitude,
period, phase shift, and midline. Then graph the function.

Solution. Compare the function to the standard form y = Acos(Bx — C) + D, we have
A=—2 B:g, C=—n, and D=3
Thus, we can determine the characteristics as follows:
Midline: y = Amplitude:
Period: __ 2™  _ Phase Shift:
2

To sketch the graph, we first plot three dashed horizontal lines:

* the midline y = 3,

* theliney =3+ |A| = passing through a minimum, and
* theliney=3—|4| = passing through a minimum.

Then, we plot key points starting from the phase shift - = —2 and moving to the right (or

left) by the quarter period -4 —— The key points are:
 Atz=-2,y=3—]A|=__ (minimum because 4 < 0)

s Atz =2+ % =,y =3(midline because the function must be increasing)

. Atx:—2+§:_,y=3+|A| = (maximum)

s Atz =2+ 3% = ,y=3(midline because the function must be decreasing)
cAtz=-2+T=__ ,y=3—|Al=___ (minimum)

Finally, we connect the key points with a smooth curve to complete one period of the
graph, and repeating the same pattern for additional periods.

The five key points can also be found by evaluating the function at z = —2,-1,0,1,2,
which are the values phase shift plus multiples of quarter period.
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Example 4.4.3. Find an equation of the sinusoidal function defined by the following
graph.

|
[\]
oy
|
Ny
| 1
W[y
| 1
]
[\G) — [ [\&) w =~
1 1 \l 1 1 1 QQ
T T T T T
ol
wly
ol
w|y
8

Solution. We may assume the function is in the form of f(z) = Asin(Bz — C) + D. More-
over, we may assume that B > 0, otherwise, we can replace B with —B and C with —C
and move the negative sign to A using the identity sin(—z) = —sin z.

From the graph, we see the maximum valueis f,.. = 3 and the minimum value is f_;,, =
—1. Thus, we have

fax + Fni Jmax = S
D — max min — 1 A — max min — 2.
Lo Wi g, 4] = L
Therefore, the midline is y = 1 and the amplitude is 2.

Starting to the point (0, 1) on the midline and moving to the right, we see that one com-

plete cycle ends at the point (2£,1). Thus, the period is T = . Since B is assumed
to be positive, the formula T = 27 gives
2
B=—= .
T —

Since the y-intercept (0, 1) is on the midline, comparing with that of y = sin z, we have the
phase shift is 0. Thus, we have

C = B . = O_
Now we can write the equation of the sinusoidal function as
f(z) = Asin( x) +

Since the graph shows that the function is increasing at z = 0, we have A > 0. Therefore,
the equation of the sinusoidal function is

f(z) = sin( x — )+ : J

CJ Remark

Assuming the function is in the form of f(z) = Acos(Bx — C) + D, using a similar process,
one can find that

f(z) = 2cos(3x — g) + 1.
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Exercises
]

#’ Exercise 44.1. Determine the midline, amplitude, period, and phase shift of the function y =
2cos(2mx —m) — 1.

Answer: Midline: y = —1; Amplitude: 2; Period: T = Z = 1; Phase Shift: = = 1.

# Exercise 442 Giveny = —3 sin(%x — ) + 2, determine the amplitude, period, phase shift, and
midline. Then graph the function.

Answer: Midline: y = 2; Amplitude: 3; Period: 4; Phase Shift: —2.
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#’ Exercise 4.43. Find an equation of the sinusoidal function defined by the following graph.

Answer: f(z) = —2sin(2z) — 1.

@ 134 [ 224 PreCalculus Workbook


https://creativecommons.org/licenses/by-nc-sa/4.0/

Chapter 4 Trigonometric Functions 4.5 Graph of Other Trigonometric Functions

4.5 Graph of Other Trigonometric Functions

P Properties of y = Atan(Bz — C) + D and y = acot(Bz — C) + D

Tangent and cotangent functions are periodic odd functions with vertical asymptotes.

Graph of the standard function y = tanxz  Graph of the standard function y = cot =

T
Common Properties of y = Atan(Bx — C)+ D andy = acot(Bx — C) + D
+ Period: |%‘ Range: (—o0, 00), Phase shift: % Midline: y = D.

* Special points:

B B B
which are derived from tan(%) = cot(%) = 1, where k is any integer.

« Symmetric with respect to each intersection of the graph or the vertical asymptote with
km )

T4 T4
(o5 en) (52755 0e0)

.- k k
the midline because tan(g + x) = —tan ; — x) and cot ; + x) = —cot - )
In particular, if C =0 and D = 0, that is, no horizontal and vertical shifts, then the

functions are odd functions.
Properties of y = Atan(Bx — C) + D Properties of y = acot(Bxz — C) + D
 Domain: all real numbers z such that ¢ Domain: all real numbers z such that

Ba:—C;éknr—i—g. Bx — C + k.
« Vertical asymptotes: * Vertical asymptotes:
kr w4+ 2C _km C
= — ) T = B + B

=BT 2B
« Increasing (decreasing) within each inter- * Decreasing (increasing) within each inter-
val (a,b) in its domain if A > 0 (if 4 < 0). val (a,b) in its domain if A > 0 (if A <0).
* Points on the midline:

* Points on the midline:
kr  C kr w4 2C
. — D].
(k< ). (br w2

The period is also the distance between two consecutive vertical asymptotes.
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|_Example 4.5.1. Sketch a graph of one period of the function y = 3 tan(%z).
Solution. The graph can be sketched using properties of the function.

The period is
e

T = =2.

Since y = tanx has vertical asymptotes at z = ig, solving gw = ig gives the vertical

asymptotes of the function at
r =4+
The midline is y = 0, and an z-intercept is at (0, 0).

. ™ . ™ m™ . . .
Since tan(:tz) =4 , solving 5% = iZ gives the special points at

(el

Because A > 0, the function is increasing in each interval of its domain.

Plotting the asymptotes, intercept, and special points, and connecting them with a
smooth curve gives the graph of the function within one period.

Y
3-.

P

|
)
=
NSRS WSS I RS S P——
)
8

(7 Graph of Cotangent Functions

Recall that tangent and cotangent are cofunctions. Then
™ ™
tan(z) = COt(§ — :c) = —cot (:c — 5)
Moreover, the graph of y = A cot(Bz — C) can be obtained from the graph of the tangent
function y = Atan(Bz — C) by a horizontal shift of 5% units to the right together with a
vertical reflection.
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<P Properties of y = Asec(Bz — C) + Dand y = acsc(Bz — C) + D
Secant and cosecant functions are also periodic functions with vertical asymptotes.

Graphs of y = secx with y = cosx Graphs of y = cscx with y = sinx
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Common Properties of y = Asec(Bx — C)+ D and y = acsc(Bx — C) + D

Period: ﬁ Range: (—oo, —|A| + D] U [|A| + D, ), Phase shift: % Midline: y = D.
The graph has U-shaped and inverted-U-shaped branches that alternate between adja-
cent vertical asymptotes.

Properties of y = Asec(Bx — C) + D Properties of y = acsc(Bx — C) + D
* Domain: all real numbers z such that e« Domain: all real numbers z such that
Ba:—C’#ImrJrg. Bz — C # k.
« Vertical asymptotes: * Vertical asymptotes:
kr w4+ 2C _km C
=BT 2B TTETE
 Turning points: * Turning points:
2%kr  C 2%kn  Z+C
ke W — A+ D
(24 Soap) (B + 255
2kr w+C 2km —%+C_A D
(? + B ,—A+ D) ( B + B +

The period is twice the distance between two consecutive vertical asymptotes as well as
the distance between two consecutive turning points with the same y-coordinate.

The midline y = D is the horizontal line that has the distance |A| from any turning point.
Moreover, D is the average of the y-coordinates two consecutive turning points.

L7 Graph of Cosecant Functions

Since sin(z) = cos(xz — §), we have csc(z) = sec(z — §). Therefore, the cosecant function
can be obtained from the secant function by a horizontal shift of ;5 units to the right.
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Chapter 4 Trigonometric Functions 4.5 Graph of Other Trigonometric Functions

L7 Reciprocal Relationships

Secant and cosecant are the reciprocal functions of cosine and sine, respectively.
* Where cosz or sinz is 0, sec z or csc x has vertical asymptotes.

* Where cos z or sinz has maximum or minimum values, sec z or csc z has turning points.

Example 4.5.2. Determine the equation y = Asec(Bz — C) + D of the function defined
by the following graph.

- N -

—t e —

N R U A g I, R —

g e [ S S

1
1
1
1
1
1
1
1
1
1
1
1
1
)
1
1
1
1
1
1
1
1
1
1
1
1
1

1 1
1 1
1 1
1 1
) )
1 1
1 1
1 1
1 1
T T T
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1

Solution. Because secant is a even function, we may assume that B > 0, otherwise, we
can replace B by —B and C by —C.

Because the distance between two consecutive vertical asymptotes atz = —1 and z =0
is 1, the period is T = , and we have

B =

2
Because the average of y-coordinates of two consecutive turning points is 22 =1, so
we have

D= and the midline lineis y=1.

Since (0,2) is a local minimum, comparing with the standard function y = sec z, we have
C=0and A > 0.

Since the distance from a turning point (0, 2) to the midline y = 1 is 1, we have
A=

Therefore, the equation of the function is

y = sec(mz) + 1. J
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Exercises
]

4’ Exercise 45.1. Find an equation of the tangent function defined by the following graph.

NED- VN [ENDEDENPIEN SN e ——

e il el e

Answer: f(z) =2tan(fz)— 1.
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#/ Exercise 45.2. Skefch a graph of f(z) = —sec(%) + 1 in one period.

Answer:

EEEERE b
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4.6 Inverse Trigonometric Functions

Definition 4.6.1 (Inverse Functions of Trigonometric Functions)

Because the trigonometric functions are periodic and not one-to-one on their natural
domains, their inverses are defined by restricting to a specific interval called the prin-
cipal branch.

 The inverse sine function y = sin~! z is the inverse function of the sine function y =
sinz with z in [—%, Z]. The notation sin~! z is read as “sine inverse of z". The inverse
sine of z is also denoted as arcsin z, and read as “arcsine of z”.

The domain of sin™! z is [-1,1] and its range is [-%, Z].

 The inverse cosine function y = cos™! z is the inverse function of the cosine function
y = cosx With z in [0, 7]. The notation cos™! z is read as “cosine inverse of z". The inverse
cosine of z is also denoted as arccos z, and read as “arccosine of z”.

The domain of cos™' z is [—1, 1] and its range is [0, ].

* The inverse tangent function y = tan~! z is the inverse function of the tangent func-
tion y = tanx with z in (—%, Z). The notation tan™! z is read as “tangent inverse of z".
The inverse tangent of z is also denoted as arctan z, and read as “arctangent of z".

The domain of tan™! z is (—oo, 00) and its range is (—%, ).

* The inverse cotangent function y = cot™! z is the inverse function of the cotangent
function y = cot x with x in (0, 7). The notation cot™! z is read as “cotangent inverse of
z". The inverse cotangent of z is also denoted as arccot z, and read as “arccotangent
of z".

The domain of cot™! z is (—o0, 00) and its range is (0, ).

 The inverse secant function y = sec™! z is the inverse function of the secant function
y =secz with z in [0,%) U (3, n]. The notation sec™! z is read as “secant inverse of z".
The inverse secant of z is also denoted as arcsec z, and read as “arcsecant of z”.

The domain of sec™! z is (—oo, —1] U [1,00) and its range is [0, 5) U (3, 7].

« The inverse cosecant function y = csc™! z is the inverse function of the cosecant func-
tion y = cscz with z in [—3,0) U (0, Z]. The notation csc™' z is read as “cosecant inverse
of z". The inverse cosecant of z is also denoted as arccsc z, and read as “arccosecant
of z".

The domain of csc™! z is (—oo0, —1] U [1, 00) and its range is [-5,0) U (0, 5].

/
NG

L3 A Remark on Notations of Inverse Functions
In computer programming languages, the inverse trigonometric functions are often
called by the abbreviated forms |asin], [acos) [atan]
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@ Graphs of Inverse Trigonometric Functions

The graphs of the inverse trigonometric functions can be obtained from the graphs of
the corresponding trigonometric functions by reflecting about the line y = z.

Graphof y =sec 'z andy =csc 'z

)
o+
— coctl -
y = sec (x) z
1 2 3 :1 z
2
Example 4.6.1. Evaluate each of the following.
1) sin~! (—g) 2) cos! (_%g) 3) tan !(m)
Solution.
1) Because sin(—Z) = —¥2 and —T is in the range of sin~! z, we have
sin — | =
2
2) Because cos(5%) = —‘/Tg and 27 is in the range of cos™ z, we have
o V3
COS —7 =

3) Since 7 is not a value of special angle, we use a calculator to find

tan—! () :[2nd |+[tan +[2nd +—|——|— enter |=

Graphof y =sin "'z andy = cos 'z Graphof y =tan 'z and y = cot 'z
Yy Y
{ T4
=[cos™(x) m)\
sy
2
-2 -1 1 2 T -4 -3 2 -1 1
y =[sin~" (z) y =tan"!(z
_z _z
2 2

|
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Chapter 4 Trigonometric Functions 4.6 Inverse Trigonometric Functions

<P Composition Identities: Sine and Cosine of Inverse Trigonometric Functions

From the definition of inverse function and the Pythagorean identities, we have the
following composition identities for all values of z in the domains of the corresponding
inverse trigonometric functions.

0= sin~1z cos 1z tan— ! x cot 1z sec g csc
T 1 1 1
: _ A1 2 S . -
sinf = T 11—z 1122 1122 1 - -
1 z 1
_ 1 2 ] Z _
cosf = 1—=z T s a° 1122 - 1 =

L) Geometric Aproach to Composition Identities

The composition identities in the above box can also be verified geometrically by con-
structing right triangles based on the definitions of the inverse trigonometric functions.
For example, to verify that sin(cos™ ! z) = v/1 — z2 for —1 < z < 1, we can construct a right
triangle with an acute angle § = cos™! 2 with adjacent side length = and hypotenuse
length 1.

By the Pythagorean theorem, the opposite .
side to angle 6 has length v1 — z2. There- V1 — 22
fore, we have f

sin(cos_1 z) =sinf = v1—z2.

T

(7 Other Trigonometric Functions of Inverse Trigonometric Functions

Using the composition identities for sine and cosine of inverse trigonometric functions
and the basic identities of trigonometric functions, we can find other trigonometric
functions of inverse trigonometric functions. For example,
sin(sin_1 a:) _ T

cos(sin~lz) /1 _ 52’

tan(sin™! z) =

where —1 < z < 1.

Example 4.6.2. Find an exact value for sin(cos™ (£))

Solution. Let 6 = cos™! (%) From the definition of inverse cosine function, we have
cosf = with 0<0< .

Then sin @ > 0. By Pythagorean identity, we can find sin 6 as follows:
2
sinf =4/1— (il> =
)T — i
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F(ample 4.6.3. Find an exact value for sin(tan™'(2)).

Solution. Let 6 = tan' (). From the definition of inverse tangent function, we have

T T
tand = ith —— <6< —.
an w1 2 <0< 5

Then sinf > 0.

We can assume that 6 is an angle in a right

triangle with opposite side length 4 and

adjacent side length 7. By the Pythagorean V65
theorem, the hypotenuse has length

V42 72 = . f

Therefore, we have 4
sinf = ) J

X7 Inverse Trigonometric Functions of Sine, Cosine and Tangent

From the definition of inverse functions, we have the following basic indentities for all
values z in the ranges of the corresponding inverse trigonometric functions.

™ ™
sin"!(sinz) =z only for — SST<g
cos!(cosz) =x onlyfor 0<z <7
T ™
tan~!(tanz) = x only for — 5 <T<3
For a general value of z, the inverse trigonometric function of its corresponding trigono-
metric function can be found using the reference angle. For example,
sin~!(sinz) = sign(sin ) - z,.

where sign(sin z) is the sign of sin z and z, is the reference angle of z.

Using the cofunction identities, we can obtain the following relationships between inverse
sine and inverse cosine functions:

sin~1(y) = g —cos i(y) for —1<y<1

cos!(y) = g —sin(y) for —1<y<1.

Consequently, we have the following identities
N @
sin (cosx)za—x for 0<z<m

L(sing) = - —g for —~ <z <=

cos " (sinz) 5~ for —o<z<o.

In genearl, there is no simple formual for other compositions of the form f~!(g(z)) where
f, g are trigonometric functions.

>For more relationships among inverse trigonometric functions, please refer to the wikipedia page on
Inverse trigonometric functions: https://en.wikipedia.org/wiki/Inverse_trigonometric_functions.
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F(ample 4.6.4. Evaluate the following.

1) sin~!(sin(Z)) 2) cos™*(cos(—5))

Solution.

1) Because % isin the range [—%, 7] of sin ! z, we have

sin~? (sin (g) ) =

2) Because —Z% is not in the range [0, 7] of cos™' 2, we need to find the reference angle of
—Z, which is Z. Since cos(—%) = cos(%) and % is in the range of cos™ z, we have
™

oo fen( )= |

F(ample 4.6.5. Evaluate cos™!(sin(2Z)).

Solution. Because the reference angle of 2= is 2% and

(%) =-on(Z) =)

we have
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Exercises

# Exercise 4.6.1. Evaluate each of the following.

1) sin~! (42) 2) cos™(~5) 3 tant

“[S
SN——

Answer: 1) 7 2) 24741 3) —5%
#’ Exercise 4.6.2. Evaluate the following.

1) sin~!(sin(%)) 2) cos™'(cos(—7%))

Answer: 1) & 2) 3%
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# Exercise 4.6.3. Evaluate cos™*(sin(13%)).

5
Answer: %

4’ Exercise 4.6.4. Find an exact value.

1) sin(cos™!(2)) 2) cos(—tan!(

S
N~—
N—

Answer: 1) 2 2) =
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Chapter 5 Trigonometric Identities and Equations

5.1 Simplifying Trigonometric Expressions

X7 Basic Trigonometric Identities

Pythagorean Quotient Product Negative Angle
sin2z 4+ cos2z =1 tana — sinz tanzcotzx =1 sin(—z) = —sinx
1+tan?z =sec’z cos T sinzcscz =1 cos(—zx) = cosx
1+ cot?z =csc’z cotr = Z?;: coswsect =1 tan(—z) = —tanz

Example 5.1.1. Verify the trigonometric identity.

1) tanfcosf = sinf 2) sec?f — 1 — sin20
sec? 0

Proof. We prove that the left-hand sides can be simplified to the right-hand sides.
1) Simplify the left-hand side:

tanf cosf = ﬂcos@ = sin 6.

Thus, the identity is verified.

2) Simplify the left-hand side:
29 _ —
sec” 0 1:— 1:—:1—cos20:
sec? f cos12 0 ﬁ

Thus, the identity is verified. J
Example 5.1.2. Simplify the trigonometric identity.
1) sin®(—0) — cos®(—0) 2) (1—cos?z)(1+ cot?x)

sin(—6) — cos(—0)

Solution.

1) First apply the negative angle identities and difference of squares and then simplify:
sin?(—6) — cos?(—0) _ sin®*(0) — cos®(0)
sin(—6) — cos(—0)  —sin(f) — cos(H)
(sin () — cos(6))( )
—(sin(6) + cos(6))

2) First apply the Pythagorean and Product identities and then simplify:
.2
2 sSmm- xr

(1—cos?z)(1+ cot?z) = ( )sec?y = ————— = : J
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Exercises

47 Exercise 5.1.1. Simplify the trigonometric identity.

a2
2 2) cott+tant 3 1—cos” x

. . 2
1) tanzsinz + secx cos®z sec(—?) g TSIt

Answer: 1) secx 2) csct 3) 1
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5.2 Sum and Difference Angle Formulas

Theorem 5.2.1 (Sum and Difference Angle Formulas)
The following identities hold for all angles « and g:
sin(a 4+ ) = sinacos B + cos asin 5 sin(aw — ) = sinacos B — cos asin 5

cos(a + ) = cosacos f — sin asin cos(a — ) = cosacos 8 + sin asin

@

Proof. We first prove the formulas under the assumption that o, 8 and « + g are all in the
first quadrant. In this case, the formulas follows from the following figures®.

cos(a + fB) sinasinf sin(a = B) cosasinpf
a+p a
8 v,
3
— [7,] — w
Q R 5- Q jn s 5‘
o1 1 A :
S S
£ 3
(%] (8]
a-pB
(%) [a)
;i 5 B a
0 0
2 2
a ReS) ®
cosacosf sinacosf

For other cases, these formulas can be deduced from the first quadrant case using sym-
metry, cofunction identities, and the reference angles. O

() Remark

The sum and difference angle formulas implies the following identities which can also
obtained using the unit circle and reference angles.

Cofunction Supplementary Angle Half Period Shifting
Sin(g — x) = COSZT Sin("r - CE) =sinx sin(:c + 7T) = —sinx
- cos(m —x) = —coszx cos(x + m) = —cosz
COS(§ — $) =sinx tan(?T — g;) = —tanzx tan(m 4+ 7-(-) —tanzx
s
tan(— — ac) =cotx
2

®This proof can be found in R. B. Nelsen, Proofs Without Words II, MAA, 2000, p. 46. See also the Wikipedia
page https://en.wikipedia.org/wiki/List_of_trigonometric_identities#Angle_sum_and_difference_identities.
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F(ample 5.2.1. Find the exact value.

1) cos(75°) 2) sin(—1%)

Solution.

1) We can use the sum angle formula with o = 45° and 8 = 30°:
cos(75°) = cos(45° + 30°)

= cos 45° - — - sin 30°

2) We can use the difference angle formula with a = Z and g = 7:

o Tm\ (77

Sin 12 = Sin 12
(24T
= Sin 3 1

. ™ ™ T LT

= — (sm(g) cos(z) + cos<§> s1n(z)>
)

__V6+V2
[E(ample 5.2.2. Find the exact value of sin(cos™!(3) +sin~1(2)).

Solution. Let a = cos™!(1) and g =sin*(2). Then we have

1 3
cosa = 3 and sinf = -.

)
Because both sin(cos™! z) and cos(sin~! z) are positive for z in their domains, using the
Pythagorean identity, we get

1 2 3 2
sina=14/1— (5) = and cosfB=4/1— (5) =
From the sum angle formula for sine, we have

sin(a + ) = sinacos B + cos asin 3

— . . . )

_27+4V3

- i
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13°
1) sin(a + B) 2) cos(a—p) 3) tan(a+ B) 4) csc(a— B)
Solution. We first find cos @ and sin 8 using the Pythagorean identity:

f 3\ 2
cosa =V1—sin?a = 1_<5> = ,
5\ 2
sinf8 =—1/1—cos2 3 =— 1—(—5) = )

1) Using the sum angle formula for sine, we have
sin(a + ) = sin a.cos 8 + cos asin 3

-3 (m)+
5 13

F(ample 5.2.3. Givensina =2, 0<a<Z,andcosf=—35, w<p<?3,find

2) Using the difference angle formula for cosine, we have
cos(a — ) = cos a.cos 5 + sin asin 5

- ()3
[ 13 5

3) Because we already found sin(a + 3), to find tan(a + 3), we find cos(a + 8) and then
apply the Quotient identity.
cos(a + B) = cosacos 8 — sin asin 8

SN

Thus,
__sin(a+p8)
tan(a + 8) = cos@t B) :
4) Using the difference angle formula for sine, we have
sin(a — ) = sinacos B — cos asin

3 (5)-

Thus,

csc(a—ﬁ):m:—' J
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Exercises

47 Exercise 5.2.1. Find the exact value.

1) sin(—?—g) 2) cos(ﬂ)

Answer: 1) —@ 2) —@

)

#’ Exercise 5.2.2. Find the exact value of cos(cos™! (%) — sin~}(

SIEN

Answer: %
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# Exercise 523. Given sina=—3, m<a<3f andcosf=1, 0<p<Z find
1) sin(a— B) 2) cos(a+ f) 3) cot(a—p)

Answer: 1) -2 2) -1 3) ¥

#/ Exercise 5.2.4. Verify the identity
sin(a + ) + sin(a — ) = 2sin a cos S.
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5.3 Double/Half Angle Formulas

Theorem 5.3.1 (Double and Half Angle Formulas)
Double Angle Formulas

sin(2a) = 2sin o cos « cos(2a) = cos? a — sin? o

Half Angle Formulas

sin? Q _1—cos€ cos? g _1—|—cos€
2) 2 2) 2

VY

Proof. The double angle formulas follow directly from the sum angle formulas by setting
B = a. The half angle formulas can be derived from the double angle formulas by solving

for sin?(£) and cos?(%) in the double angle formulas after replacing o by . We leave the
details to the reader. O

L7 Other Forms of the Double Angle Formula for Cosine

From the Pythagorean identity, we have the following equivalent forms of the double
angle formula for cosine:

cos(2a) = 2cos? a — 1
=1—2sin?a.

Example 5.3.1. Find sin 15° and cos 15°.

Solution. We can use the half angle formulas with 6 = 30°:

. ) <30°) \/1—00830° \/ \/2—
sin 15° = sin =4/ — =
2
o 1 o \/7
cos 15° = cos(30 > \|———— + c0s 30 \/ J

CJ Remark

Note that we have already found cos15° in the previous section using the sum angle
formula. The result here is consistent with the one previously obtained because

2”3:;_2@@;:([ [) (f+f>

V2+v3 (ﬁgﬁ)z _V6+V2
2 2 4

and thus
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|_Example 5.3.2. Find the exact value.
1) sin(2 cos_l(g)) 2) tan(? sin_l(g))
Solution. Let a = cos™!(2). Then we have

3
coso = —.
)

Using the Pythagorean identity, we get

3 2
i e ]_— — = .
a1 (2)

From the double angle formula for sine, we have
sin(2a) = 2sin a cos «

_9 3
)
24
25
Let 8 =sin~!(2). Then we have
.. 3
sin 8 = £
Using the Pythagorean identity, we get
3 2
= 1 — — =
cos 8 (5)

From the double angle formulas for sine and cosine and the quotient formular for
tangent, we have

(SN
[\
i~

_sin(28) _ 2smBeoss 2% =
tan(2p) = cos(28)  cos2f—sin2f ( )2 B ( = —. J

[$A1[J5]
N—
[\V]
~

Example 5.3.3. Given that tana = & and « lies in quadrant III, find the exact value of the
following:

1) sin(§) 2) cos(%) 3) tan(%)

Solution. Because a lies in quadrantIIl, 7 < a < 2% and hence Z < ¢ < 3 < 7. Therefore,
both sin a and cos a are negative, sin($) is positive and cos(§) is negative.

Using the Pythagorean identity and the Quotient identity, we have

cosa = — ;z— ;z ,
V1+tan2a 1+ (&)° —

. ¢ 8 ( 15)
sina=tana-cosa=—: |—— | =
15
1) From the half angle formula for sine, we have
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2) From the half angle formula for cosine, we have

ay l1+cosa 1+(—%)_ V1T
cos(3) =5 = = =T

3) From the half angle formula for tangent, we have
tan(g) _ sin & _

2 cos § ) J

CJ Double and Half Angle Formulas for Tangent

From the double and half angle formulas for sine and cosine and the Quotient identity,
we have the following formulas for tangent:
2tan o

tan(2a) = T ta2 o

o sin o 1—cosa
tan(—) = = - .
2 1+ cosa sin o

In later sections, we will solve equations involving powers of sine and cosine. The following
example shows how to use the double and half angle formulas to rewrite such expressions
into equivalent expressions without powers greater than 1.

|_Example 5.3.4. Write the expression into an equivalent expression without any powers
greater than 1.
1) cos*z 2) sin®zcosx
Solution.

1) Using the half angle formula for cosine 2) Using the double angle formula for sine

twice, we have and the half angle formula for cosine, we
cos? z = (cos? x)2 have
1 + cos(22) 9 sin® z cosz = sin?z - (sinz - cos )
cos(2zx

- ( 2 ) 1 —cos(2z)

) N 2 2
== 2 1 1

4(1 + 2 cos(2w) + cos®(2)) =3 -7 sin(2z) cos(2x)

—1<1+2 (2)+—)
=1 cos(2x 5 -

_ | |
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Exercises

47 Exercise 5.3.1. Find the exact value.

1) cos(2 sinfl(é)) 2) tan(2 cosfl(‘gl))

Answer: 1) —L 2) %

4’ Exercise 5.3.2. Given that sina = —% and « lies in quadrant 1V, find the exact value of tan(%).

Answer: —1

2
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#/ Exercise 5.3.3. Rewrite the expression with no exponent higher than 1 and no product of two
trigonometric functions.

1) 8sin*(3%) 2) 4cos®(x)sinz.

Answer: 1) 2 —1cos(3z)+ §cos(6z) 2) 2sin(2z) + 1 sin(4x)
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5.4 Sum-to-Product and Product-to-Sum Formulas

Theorem 5.4.1 (Product-to-Sum and Sum-to-Product Identities)
Product-to-Sum Identities

cosacos 3 = %(cos(a — ) + cos(a+ 5))
sin o cos B = %(sin(a + B) +sin(a — 3))

sinasin 3 = %(cos(a — B) —cos(a+ B))

Sum-to-Product Identities

cosa+cosﬁ:2cos<a;ﬁ) cos(agﬁ)

sina +sin 8 = 2sin(a;ﬁ) cos(a;ﬁ)

cosa — cos 8 = 2sin(a+6> sin(a_ﬂ)
2 2

Proof. The product-to-sum identities can be derived by applying the sum and difference
angle formulas.

The sum-to-product identities can be derived from the product-to-sum identities by replac-
ing a and B with 222 and %2 respectively.

We leave the details to the reader. O
F(ample 5.4.1. Write the following product as a sum

1) 2cos(ZE) cos(32) 2) sin(360) cos(50)

Solution.

1) Using the product-to-sum identity for cosine, we have

peos T2 Yeos(22) oo - 2) oo 24 2
COSQCOS2 —COS2 5 COS2 5

2) Using the product-to-sum identity for sine and cosine, we have
1
sin(30) cos(56) = §(sin(30 + 56) + sin(36 — 50))

1, . .
= 5(8111(—) + s1n(_))

_ | §
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Example 5.4.2. Write the following difference or sum expression as a product.

1) sin(30) —sin@ 2) cos(26) + cos(46) 3) sinf —cosd
Solution.

1) Using the sum-to-product identity for sine, we have

sin(30) —sinf = 2cos<36; 9) sin(392_ 0)

= 2 cos(26) sin(h).
2) Using the sum-to-product identity for cosine, we have

cos(260) + cos(40) =

= 2 cos(360) cos(—0)
= 2 cos(36)

3) Using the cofunction identity and sum-to-product identities for sine, we have
sin @ — cos § = sin § — sin( )

_ 2sin(9+#—> cos(%)
_ 2sin<£) cos(?>

_ | i
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Exercises
]

# Exercise 5.4.1. Write the following product as a sum

1) sin(£) cos(22) 2) sin(40)sin(20)

Answer: 1) 1(sin(30) —sin(260)) 2) i(cos(26) — cos(66))
# Exercise 5.4.2. Write the following difference or sum expression as a product.

1) sin(560) —sin @ 2) cos() + sin(6) 3) cos(36) + cos(50)

Answer: 1) 2cos(30)sin(20) 2) v2sin(0+Z) 3) 2cos(49) cos(6)
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4’ Exercise 5.4.3. Find the exact value.

1) sin(75°) — cos(75°) 2) sin(15°) + sin(135°)

Answer: 1) @ 2) @
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5.5 Solving Trigonometric Equations

Q How to Solve a Trigonometric Equation

To solve a trigonometric equation of an angle 6, we typically follow these steps:

1) Use algebraic manipulation and trigonometric identities to express the equation in the
standard form:
f(X)=c,
where f is a basic trigonometric function (sin, cos, or tan), X is an expression in 6, and
c is a constant. Note that the other three trigonometric functions (csc, sec, and cot) are
reciprocals of sin, cos, and tan respectively.

2) Apply the inverse trigonometric function to both sides to find a particular solution X =
f~Y(c) and use symmetry and periodicity to find the general solution for X:

 If f(X) = sin X, then the general solution is
X =sin"!(c)+2kr or X =m—sin"l(c)+2knr, k€EZ.

« If f(X) = cos X, then the general solution is
X =cos !(c)+2kr or X =—cos!(c)+2km, ke€Z.
* If f(X) = tan X, then the general solution is
X =tan~!(c) + kn, ke€Z.

3) Solve for 6 in the specified interval from the general solution for X.

CJ Remark

The reason that we have two forms for the general solutions of sin X = ¢ and cos X = ¢
lies in the symmetries of their graphs. Specifically, consider the following identities:

sin(g+X>=sin(g—X> and cos(X) = cos(—X).

By substituting X with £ — X, the first identity becomes
sin(X) = sin(m — X).
It follows that if X =sin~!(c) is a solution to sin X = ¢, then X = 7 —sin~!(c) is also a
solution.
Similarly, if X = cos™!(c) is a solution to cos X = ¢, then X = —cos™!(c) is also a solution.

However, for tan X, the symmetries,

tan(k—W+X> = —tan(k—W—X) =tan(X— k—ﬁ),
2 2 2

implies that tan(X) = tan(km — X). Hence, any two solutions of tan X = ¢ differ by kx for
some integer k, which is already captured in the general solution.
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|_Example 5.5.1. Find all solutions in their exact form for the equation.
1) cosé?:% 2) sinG:%
Solution.
1) We apply the inverse cosine function to both sides to find a particular solution:

1
= -1( = =
0 = cos (2) .

Using the general solution for cosine, we have
0= +2km or 60=-— + 2kmw, keZ.

2) We apply the inverse sine function to both sides to find a particular solution:

1
— gin—! — =
0 = sin (2) )

Using the general solution for sine, we have

0= +2kw or w— + 2k = + 2kmw, keZ. J

|_Example 5.5.2. Solve the equation exactly:
2cos0 —3=—-5, 0<0<27.

Solution. We first isolate the cosine function:

2cosf = —2
cosf = —1.
We apply the inverse cosine function to both sides to find a particular solution:
6 =cos !(—1) =

Using the general solution for cosine, we have
0= +2km or 60=-— + 2kmw, keZ.

Because 0 < 0 < 27, both forms of the general solutions lead to the same solution
6= . J

|_Example 5.5.3. Solve the equation exactly:
2sin?—1=0, 0<6<2n7.

Solution. By the double angle formula for cosine: cos(20) = 1 — 2sin? 6, we see that the

equation is equivalent to cos(26) = 0.
Therefore, 20 = +2km or 20 =— + 2k
0= +kr or 0= — + km.

Because 0 < 6 < 2, the solutions are

9 = Y Y Y : J
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|_Example 5.5.4. Solve the equation exactly:
4cos?0+3cosf—1=0, 0<6<2nm.

Solution. We first substitute cos 6 by z and solve the resulting quadratic equation:
422 +3x—1=0

(43:—1)(—):0
4r—1=0 or =0
1
.T:Z or r=—1.

We now solve for 8 in each case.

1) When cos6 = 1, we apply the inverse cosine function to both sides to find a particular

solution:
1
0 = -1 (—) = .
COS 4

Using the general solution for cosine, we have
0= +2km or 60=-— + 2km, k€ Z.

Because 0 < 0 < 2m, the solutions are
H =

Y

2) When cos # = —1, we apply the inverse cosine function to both sides to find a particular

solution:
6 = cos™!(—1) =
Using the general solution for cosine, we have
0= +2km or 60=-— + 2km, keZ.

Because 0 < 6 < 2m, there is only one solution and the solution is

9:_. J

CJ Remark

A

In the previous example, because 0 < 6 < 2w, we could
directly determine 6 from the unit circle. For example, for
cosf = 1, the figure on the right shows two solutions: 6, =

cos™'(3) and 6, = 2m — cos*(3).

However, in general, if the equation involves a multiple
angle, such as cos(26) or sin(30). In such cases, it is better to
rely on the general solution approach as the unit circle may
not directly provide all solutions in the specified interval.
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|_Example 5.5.5. Solve the equation exactly: 2 cos? § — 3sin 6 = 3.

Solution. By Pythagorean identity, cos? § = 1 — sin? 6, we can solve for sin 4 as follows:
2(1 —sin? @) — 3sinf = 3
—2sin? 6 — 3sinf +2 =10
2sin? 6 + 3sinf —2 =0
( )(sin@+2) =0
=0 or sinf+2=0
sinf=  or sinf = —2

The equation sin § = —2 has no solution because the range of the sine function is [-1, 1].
For the equation

6 — -
sin 5

applying the inverse sine function to both sides gives a particular solution:

1
—gin~ 1 = =
0 = sin (2) .

The following general solutions are
0= +2kr or 6= + 2k J

|_Example 5.5.6. Solve the equation exactly:

3
cos z cos(2x) — sinx sin(2z) = DR 0<z<m.

Solution. By the sum angle formula for cosine, we have
cos z cos(2x) — sin x sin(2z) = cos(z + 2x) = cos(3z).
Therefore, the equation is equivalent to

cos(3z) = ?

We apply the inverse cosine function to both sides to find a particular solution:

L (V3Y
3T = cos <7>— .

Using the general solution for cosine, we have
3r = +2km or 3x=— + 2km, ke Z.

Dividing both sides by 3, we get

T = 3 +3 or r=— 3 +3.

Because 0 < z < 2, the solutions are

r= , , . J
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|_Example 5.5.7. Solve the equation exactly:
cos(36) = cosf, where 0<6 <.

Solution. By the sum-to-product identity for cosine, we have

cos(36) — cosf = —2 sin(#) sin(#)

= —25in(26) sin(h).
Therefore, the equation is equivalent to
—25sin(26) sin(f) = 0
sin(20) =0 or sin(f) = 0.
1) For the equation sin(26) = 0, we apply the inverse sine function to both sides to find a
particular solution:
20 = sin~1(0) =

Using the general solution for sine, we have
20 = +2km or 20= + 2km.

Dividing both sides by 2, we get
0= +kr or 6= + k.

Because 0 < 6 < m, the solutions are
0= ,

2) For the equation sin(6) = 0, we apply the inverse sine function to both sides to find a

particular solution:
6 = sin"1(0) =

Using the general solution for sine, we have
0= 4+ 2kw or 6= + 2km.

Because 0 < 6 < m, there is only one solution and the solution is
0 =

Therefore, the solutions to the original equation are

0 — , , . J
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Exercises
]

#7 Exercise 5.5.1. Solve the equation exactly:
4sinfcosd —v3=0, 0<6<2r.

Answer: 6 = g,

# Exercise 5.5.2. Solve the equation exactly:
cos?0 —2cosh—3=0, 0<6<2m.

Answer: 6 = .
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#’ Exercise 5.5.3. Solve the equation exactly over the given interval:
2cos?0 —9sinf+3=0, 0<0<2r.

5w

. T
Answer: § = %, 5

#’ Exercise 5.5.4. Solve the equation exactly over the given interval:

1
sin z cos(2x) 4 cos x sin(2z) = 2’ 0<z<m.

Answer: = — br 13w 1T
U187 187 187 18
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Chapter 6 Laws of Sines and Cosines
6.1 Law of Sines

Theorem 6.1.1 (Law of Sines)

Given a triangle A ABC with sides of lengths a, b, and ¢ opposite to angles 4, B, and C,
respectively, then

sinA sinB sinC a b c
o o OI‘ " = - prmd -
a b c sinA sinB sinC

Proof. It follows from the following theorem of area of triangle using SAS (side-angle-side).
(|

Theorem 6.1.2 (Area of Triangle Using SAS)

Given a triangle A ABC with sides of lengths q, b, and ¢ opposite to angles A4, B, and C,
respectively, then the area S of the triangle is

1 ) ) )
S = §absmC = Eac sinb = ibc sin A.

Proof. We proof the first formula only. Other two formulas can be proved similarly.

Drop a perpendicular line from vertex B to
side AC at point D. Then

1 . 1 1 )
S = 3 base - height = ia-h— §a-bsmC.

O

|_Example 6.1.1. Solve for the unknown side and angles. Round your answers to the
nearest tenth.

% Solution. Because the sum of the angles in a triangle is
180°, we have
0
C = 180° —50° — 30° =
4 50° 30° B Using the Law of Sines, we have
AC  AB 10
sin30°  sin100°  sin50°
Thus,
.10 -10
ABzTn—SOO%T% and szn—wm&lB. J
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Example 6.1.2. Solve for the unknown side and angles. Round your answers to the

nearest tenth.
A Solution. We first find the angle A. Using the Law of Sines,

19 we have
sin A __sin 84°
C 7 12
84° ) _ - sin 84°
= (] sin A = 3

B Because both A and C are acute angles as shown in the

figure, we have

e <781n84 ) -
12
Thus,
C=180°—84°— A~
Apply the Law of Sines again to find side AB:
AB 71
sin84° sin A
- sin 84°
AB = ———— R~ .
sin A — J

Example 6.1.3. Solve for the unknown side and angles. Round your answers to the

nearest tenth.

B Solution. We first find the angle C. Using the Law of Sines,
we have
8 sinC 5
5 8  sin35°
A 35° C sin €' = sin 35°
Thus,
C:ﬂ'—sin_1< )% , and B=180°—35°—C ~
Apply the Law of Sines again to find side AC:
AC 5

sin B - sin 35°

-sin B
AC = ———— ~ .
sin 35° E— J

/\ Be Aware of the Angle Measurement Unit

When calculating the angle using the inverse sine function, be aware of the measurement
unit (degree vs. radian) set on your calculator.
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|_Example 6.1.4. Find all possible triangles if one side has length 3 opposite an angle of
45°, and a second side has length 7.

Solution.

The angle measured 45° is A, the side of length 7 is AB,
and the side opposite to A is BC. Using the Law of Sines,
we have

sinC  sin45°
7 3
- 8in 45°
3 )

sin B =

Note that as an angle of a triangle, 0 < B < 180°. Thus, as shown in the figure above,
there are two possible positions for the side BC, and hence two possible values « and g
as shown in the figure above for angle B:
ZABC = sin™!( ) &~ , and ZABC’ =180°— LABC ~
For angle ZABC, we have
ZACB =180° —45° — LZABC =~
Using the Law of Sines again, we have

BC =

Q

sin 45°
For angle ZABC’, we have
ZAC'B =180° — 45° — LZABC' ~
Using the Law of Sines again, we have

sind5° < ——— J

|_Example 6.1.5. Find the area of a triangle with sides a = 90, b = 72, and the angle C =
121° formed by those two sides. Round the area to the nearest integer.

BC' =

X

Solution. By the area formula for a triangle with known side, angle, side, the area is

S:%a-b-sinC’ 4

1
25-90-72~sin121°

~
~
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Example 6.1.6. Find the altitude of the aircraft shown in the figure below. Round the
altitude to the nearest tenth of a mile.

-

20 miles

Solution. Suppose the height of the aircraftis h miles. From the definition of sine function,
we have

h = asin 15°.
To find a, we find the angle, denoted as 3, with the vertex at the aircraft formed by sides
through two radars:

B =180° — — = 130°.
From the Law of Sines, we have
a 20 miles
sin35° sin( )
- 20 miles .
Q== ~ miles.

Thus, the altitude of the aircraft is

h =asin15° ~ miles. J

’Source: OpenStax, Precalculus, CC BY-NC-SA 4.0
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Exercises
]

# Exercise 6.1.1. Solve for the unknown side and angles. Round your answers to the nearest tenth.
1) o 2) C

40° 60° 20

Answer: 1) C ~80°, AB ~ 13.6,and BC ~ 8.9. 2) C ~ 11.6°, A ~ 148.4°, and BC ~ 15.3.

@ 177 | 224 PreCalculus Workbook


https://creativecommons.org/licenses/by-nc-sa/4.0/

Chapter 6 Laws of Sines and Cosines Exercises

#’ Exercise 6.1.2. It is known that lengths of two sides of a triangle 15 and 10. The angle opposite
to the sides of length 15 is 75 deg.

1) Find the the length of the unknown side.
2) Find area of a triangle.

Round your answers to the nearest tenth.

Answer: The length of the third side is approximate 14.1. The area is approximately 67.9.
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Exercises

# Exercise 6.1.3. The Figure below shows a satellite orbiting Earth.®

The satellite passes directly over two tracking
stations A and B, which are 69 miles apart.
When the satellite is on one side of the two
stations, the angles of elevation at A and B are
measured 1o be 86.2° and 83.9° respectively.

How far is the satellite from station A and how
high is the satellite above the ground? Round
answers o the nearest whole mile.

Answer: Satellite is 1716 miles from station A and 1706 miles above the ground.

8Source: OpenStax, Precalculus, CC BY-NC-SA 4.0
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6.2 Law of Cosines

Theorem 6.2.1 (Law of Cosines)

Given a triangle A ABC with sides of lengths q, b, and ¢ opposite to angles 4, B, and C,

respectively, then
b2 + c? — a?

cos A = 5
a? =b%+c%2—2bccos A ¢
a? + ¢ — b2
b2 = a? + ¢2 — 2accos B or cosB=2—
ac
c? = a® + b? —2abcos C ; TR
cosC = ———.
2ab

Proof. We will only prove the first formula. The other two formulas can be proved similarly.

Consider the figure on the right. By the Pythagorean Theo- C
rem, we have
h?+22=0b%> and h?+ (c—x)% =a?
Subtracting the first equation from the second and simpli-
fying gives
a? = b2+ c? — 2cx.

From the definition of cosine function, we have

x = bcos A.
Substituting this into the equation above gives the desired formula
a® = b% 4 ¢? — 2bccos A.

Theorem 6.2.2 (Heron’s Formulas (Area of Triangle using SSS))
Given a triangle with the sides of lengths a, b, and ¢, the area is
Area = /s(s —a)(s — b)(s — c),
where s = 2t2t< is the semi-perimeter of the triangle, that is, one half of the perimeter
of the triangle.

Proof. Recall that the area can be computed using the formula
1
S = Eabsin C.

By the Law of Cosines, we have

a2+b202>2

in2C=1—cos?C=1—
Sin COS ( 2ab

Simplifying (3absin 0)2 and comparing with s(s — a)(s — b)(s — ¢) verifies Herions’ formula.

We leave the details to the reader as an exercise. O
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|_Example 6.2.1. Find the length of the unknown side of the triangle.

C

40°
A B
17

Solution. By the Law of cosine,

BC? = AC? + AB?> — 2AC - ABcos40°
=1724+102—-2-17-10 - cos 40°
= — 340 cos 40°.

Thus,

BC =/ — 340 cos 40° ~ . J

|_Example 6.2.2. Find the angles in the triangle. Round your answers to the nearest tenth.

B

20 18

A C
25
Solution. By the Law of Cosines,
252 4+ 202 — 182
2-25-20

cos B =

Thus,
B = cosfl(

~—
Q

Similarly, we have

202 + 182 — 252
—_— 71 ~
C = cos ( 52018 A

Finally,
A=180°—B—-—C~ . J

@ Rounding Issues

In the above example, A can also be calculated using the Law of Cosines. Due to rounding,
the answer may differ slightly from the one obtained by subtracting B and C from 180°.
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|_Example 6.2.3. To find the distance between two locations A and B across a small lake,
a surveyor has taken the measurements shown in the figure below. Find the distance
across the lake using this information. Round your answers to the nearest tenth.

1800 ft

Solution. By the Law of Cosines,
AB? = 18002 + 2000% — 2 - 1800 - 2000 - cos 52°  ft>
= — cos 52°  ft2.

AB = \/ — cos 52° ~ ft. J

|_Example 6.2.4. Find the area of the triangle in the figure below using Heron’s formula.

Thus,

8 10

15

Solution. The semi-perimeter of the triangle is
_15+8+10
T T

By Heron's formula, the area of the triangle is

S = +/s(s —15)(s — 8)(s — 10)
-
— \/7

2
L
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Exercises
]

#’ Exercise 6.2.1. Find the unknown side and angles of the triangle.

C

10

65°

Answer: BC = 14.08, ZB = 40.1°, ZC = 74.9°.

#’ Exercise 6.2.2. Find the angles in the triangle. Round your answers to the nearest tenth.

B

11

13

Answer: A~ 59.3°, B~ 68.7°, C ~ 52°.
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4’ Exercise 6.2.3. To find the distance across a small lake, a surveyor has taken the measurements
shown in the figure below. Find the distance across the lake using this information. Round your
answers o the nearest tenth.

B

Answer: The distance across the lake is approximately 2.1 km.
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Chapter 7 Conic Sections

7.1 Parabolas

Definition 7.1.1 (Parabolas with Horizontal or Vertical Axis of Symmetry)

A parabola is the set of points P in a plane such that the distance from P to a fixed point
F (the focus) equals its distance to a fixed line [ (the directrix).

The axis of symmetry is the line through the focus, perpendicular to the directrix. The
vertex is the point where the parabola meets this axis of symmetry. The vertex lies
midway between the focus and the directrix and is the point on the parabola that is
closest to the directrix.

The latus rectum is the line segment through the focus, perpendicular to the axis of
symmetry, with endpoints on the parabola. Its length is called the focal diameter.

Denote by p the signed distance along the axis of symmetry from the vertex to the focus
(or equivalently to the directrix). Then the focal diameter equals to |4p|.

A parabola with a vertical or horizontal axis of symmetry jas the standard form equation
as follows:

Vertical Axis of Symmetry Horizontal Axis of Symmetry
2 2
(z —h)* =4p(y — k) dp(z —h) = (y — k)
Axis of '
SyTTe}ztry . ..
o Focus P !
Focus ! Latus Rectum (h+p,k) ' Vertex
(h,k+ p) ! 4|p| ) : : : (h, k)
N ! Axis of Ja .
P i Symmetry = === === =" o -0 ----
: F r=nh i
............. P |
. Latus/iRectum :
1 ‘ ‘1) ;
S S e Directrix Directrix
: l:x=k—p l:z=h—p
Vertex (h, k) 1

If p > 0 the parabola opens upward or to the right, and if p < 0 it opens downward or to
the left.

The focus always lies on the concave side of the parabola while the directrix lies on the
opposite side of the parabola.

&

Conic sections are a broad and fascinating topic. In this chapter, we focus on their basic definitions and
standard forms. For more details, see the https://en.wikipedia.org/wiki/Conic_section.
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Chapter 7 Conic Sections 7.1 Parabolas

|_Example 7.1.1. Find an equation of the parabola with the vertex V' (0, 1) and focus F(2,1),
and sketch the graph.

Solution. Since the vertex and the focus have the same y-coordinate, the axis of symmetry

is . The distance from the vertex to the focusis2—-0=2,so0p =
Using the standard form for a parabola with a y
horizontal axis of symmetry, we have 4p(z — h) = ; %1
(y — k)%, where (h, k) = (0,1). Thus, an equation of 51
the parabola is 41

16 _ )2, Pl
To sketch the graph, we plot the vertex at (0, 1), the , ....... 9

focus at (2,1), the directrix z = —2, and the latus
rectum with endpoints at (2,5) and (2,—3), then
sketch the parabola through the vertex and the PR P T
endpoints of the latus rectum. Pt

|_Example 7.1.2. Find the focus, directrix, and focal diameter of the parabola y = 2.

Solution. Rewriting the equation in standard form, we have
z? = 4( )y.

Thus, the vertex is at andp =

Therefore, the focus is at , the directrix is the line y = . The focal
diameter is double the distance between the focus and the directrix and quadruple the
distance from the vertex to the focus or the directrix, that is

1

dp| = =
[4pl = 5 J

|_Example 7.1.3. Find an equation of the parabola with the focus (1,2) and the directrix

y=—2.

Solution. The vertex is the midpoint between the focus and the directrix, which is at
)

The distance from the vertex to the focusis2—0 =2, so
p =

Using the standard form for a parabola with a vertical axis of symmetry, we have

(z—h)? =4p(y — k),
where (h, k) = (1,0). Thus, an equation of the parabola is

( Pes_ |
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|_Example 7.1.4. A searchlight has a parabolic reflector that forms a “bowl,” which is 12
in. wide from rim to rim and 8 in. deep. If the filament of the light bulb is located at the
focus, how far is the focus from the bottom of the reflector?

Solution. Let the vertex of the parabola be at the origin (0,0), and let the y-axis be the axis
of symmetry. Since the reflector is 12 in. wide from rim to rim, and 8 in. deep, the points
(6,8) lie on the parabola. Because a parabola with a vertical axis of symmetry and with
vertex at the origin, the standard form equation of the parabola is

6in. = J

Example 7.1.5. Find the vertex, focus, and directrix for the following parabola 3z — 5 =
2
Y —4y.

x? = 4py. Y
Substituting the point (6, —8) into the equation, tr ,
12 1n.
we have < 3 N
36 = 4p(—8) :
p= :
. : 8in.
Thus, the focus is at (0, ). Therefore, ;
the focus is in. from the bottom of the : f
reflector. O v
I

Solution. Rewriting the equation in standard form by completing the square for y, we
have

y?—4y+4=3c—-5+
(y—2)* = 4( ) (@~ )-
Thus, the vertex is at andp =

Therefore, the focus is at , and the directrix is the line z =
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Exercises
]

# Exercise 7.1.1. Find the vertex, focus, and directrix of the parabola.

1) z? =—-8(y—1) 2) (y+1)2=12(z—2). 3) 2% +2zx+4y=3.
Answer: 1) Vertgx: (0,1); Focus: (0,—1); Di- Vgrtex:i (2,-1); Focus: (5,—1); 3 thertex:. (—1,-1); Focus: (—1,0);
rectrix: y = 3. Directrix: z = —1. Directrix: y = 2.

#’ Exercise 7.1.2. Find an equation for the conic section with the given properties.
1) The parabola with vertex at (1,0) and focus (1, 5).
2) The parabola with vertex at (2,1) and the directrix z = —2.

Answer: 1) (z—1)2=20(y—0). 2) (y—1)2=8(z—2).
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# Exercise 7.1.3. Find the standard form equation for the parabola whose graph is given below.

Answer: z2 = 2y.
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7.2 Ellipses

Definition 7.2.1 (Ellipses)

An ellipse is the set of points P in the plane such that the sum of distances from P to
two fixed points F; and F,, called the foci (plural of focus), is a constant 2a. The midpoint
between the foci is called the center of the ellipse. The distance from the center to each
focus is denoted by c.

The major axis is the longest diameter of the ellipse, and the minor axis is the shortest
diameter of the ellipse. The major axis passes through both foci, while the minor axis is
perpendicular to the major axis at the center. The lengths of the major axis is 2a and the
minor axis is 2b where b = va? — ¢2, or equivalently

a? =b% + 2.
The intersections of the ellipse and the major axis are called the vertices, and the inter-
sections of the ellipse and the minor axis are called the co-vertices.

The center is also the midpoint of the vertices, or the co-vertices.

An ellipse with horizontal or vertical major axis has a standard form equation as follows.

Horizontal Major Axis Vertical Major Axis
2 2 2 2
(e —h?  —k? _ -0, @—h’_
a? b2 a? b2
Vertex ,
(h,k+a)!
¢
Co-vertex: Eocus '
B k+Db) |
(htd) ) (hk+ o
a’ I
Vertex X Focus Vertex Co-vertex : Co-vertex
(h—a,k) e : (h+c,k) \(h+a,k) (h—b,k) : (h+b,k)
R el e i d o----@---- R o ®---c--- -—-—-
Focus Center | Center,
(hfcv k) (h7 k) : (h7 k) :
o Focus !
Co-vertex: (bt — C)?
(h,k—b) | ’ :
.
Vertex 1
(h,k—a)

The distance ¢ from each focus to the center is called the linear eccentricity.

The eccentricity e of an ellipse is

linear eccentricity ¢
e = N N N = —
semi major axis a’

which shows how much the ellipse differs from a circle, with 0 < e < 1. The closer e is to
0, the more the ellipse looks like a circle.

L]
- /
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|_Example 7.2.1. An ellipse has the equation %2 + %1—2 = 1. Find the foci, the vertices, and
the lengths of the major and minor axes. Sketch the graph.

Solution. The given equation is in standard form with
h=0, k=0, a®=9, and b?=4.
Thus, the center is at (0, 0), the vertices are at (+3,0), and the co-vertices are at (0, +2).

The length of the major axis is

2a = ,
and the length of the minor axis is
2b =
To find the foci, we use the relationship Yy
a? = b2 + 2 to find ¢: 3+
9=4+c? 1
c? =
Cc = .
Therefore, the foci are at (+ ,0).

To sketch the graph, we plot the center,
vertices, and co-vertices, and then draw a
smooth curve through these points to form
the ellipse.

@ Latus Rectum and Directrix of an Ellipse

The latus rectum of an ellipse is a line segment perpendicular to the major axis that
passes through a focus and has endpoints on the ellipse. The length is ¥

For an ellipse centered at (h, k), the endpoints through the foci are

a

b2 . . o .
. (h +c,k+ (—) ) if the major axis is horizontal, and

b2 . . o .
. (h + (—) Jk+ c) if the major axis is vertical.
a

Plotting these endpoints along with the center, vertices, and foci gives a more accurate
sketch of the ellipse.

To have a more accurate sketch of an ellipse, we can plot the endpoints of the latus rectum
in addition to the center, vertices, and foci.

An ellipse can also be defined as the set of points where the ratio of the distance to a
focus and the distance to its corresponding directrix is constant—the eccentricity e. The
directrices are two lines perpendicular to the major axis, located at a distance § from the
center.
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|_Example 7.2.2. Find the foci of the ellipse 1622 + 9(y — 2)? = 144.

Solution. Rewriting the equation in standard form, we have
—0)? —2)?
(02 (y-2)

9 T
Thus, the center is at (0, 2),
a’® = , and b%2=09.
To find the foci, we use the relationship a? = b2 + ¢2 to find c:

16 = 9 + 2
c? =
C = .
Since a? > b2, the major axis is vertical. The foci have the same z-coordinate as the center,
and their y-coordinates are found by adding and subtracting ¢ from the y-coordinate of

the center. Therefore, the foci are at
(_2x_ ) 1

|_Example 7.2.3. Find an equation of the ellipse with the vertices (+4, 1) and the foci (£2,1).

Solution. Since the vertices and foci are on the same vertical line y = 1, the major axis of
the ellipse is vertical and hence the equation in the standard form is
— h)? — k)2
(—h)° W=k _,
b2 a?
Here (h, k) is the center which is also the midpoint of the vertices or foci and given by
44 (—4) 141
h,k) = = (0,1).
b = (FL ) = o
From the vertices, we have the length of the semi-major axis, which is the half distance
between vertices, is

a g
From the foci, we have the distance from the center to each focus, which is the linear

eccentricity, is
CcC =

Using the relationship a? = b* + ¢?, we can find b2:
16 = b +4
b? =

Thus, an equation of the ellipse is
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|_Example 7.2.4. Find the equation of the ellipse with foci (0, +8) and the eccentricity e = .

Solution. Since the foci have the same z-coordinate, the major axis of the ellipse is vertical
and hence the equation in the standard form is
(x—h)?  (y—k)?
b2 + az L
Here (h, k) is the center which is also the midpoint of the foci and given by
04+0 8+ (—8)
h,k) = = (0,0).
(= (35 1) — 0.0
From the foci, we have the distance from the center to each focus, which is the linear
eccentricity, is ¢ =

Using the eccentricity, we can find a:

Cc
e=—
a
4 8
5 a
a=___
Using the relationship a? = b% + ¢2, we can find b2:
64
64 = b2 + —
+ 25
b? =
. . . 1'2 y2
Thus, an equation of the ellipse is + =1. J
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Exercises
]

#7 Exercise 7.2.1. An equation of an ellipse is given. Find the center, vertices, and foci of the ellipse,
and the lengths of the major and minor axes.

2

par)® g 3) 922 + 187 + 25y2 = —8

x? 2 (z—1)
1) 5t 3_5 =1 2) 25 9

1) Center: (0,0); Vertices: (0, £5); Foci: (0, £4); Major axis length: 10; Minor axis length: 6.
Answer: 2) Center: (1,—1); Vertices: (6,—1), (4, -1); Foci: (5,—1), (—3,—1); Major axis length: 10; Minor axis length: 6.

3) Center: (—1,0); Vertices: (—2,0), (—3,0); Foci: (—1£,0), (—12,0); Major axis length: 2; Minor axis length: 2.
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#’ Exercise 7.2.2. Find an equation for the ellipse with each set of given properties.

i ' i i _ 4
1) vertices (£2,0) and foci (+1,0). 2) foci (1,4) and (1,0), and the eccentricity e = .
Answer: 1) 14—2 + % =1. 2) % + <y,92)z -1

4’ Exercise 7.2.3. Find an question for the ellipse with the given graph.

oz oy
Answer: s to9 =1
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7.3 Hyperbola

Definition 7.3.1 (Hyperbolas)

A hyperbola is the set of points P in the plane such that the absolute difference of the
distances from P to two fixed points F; and F,, called the foci, is a constant 2a.

The midpoint of foci is the center of the hyperbola. The distance from each focus to the
center is denoted by c.

A hyperbola has two separate curves called branches. Each branch approaches two lines
through the center called asymptotes.

The transverse axis is the shortest line segment connecting the two branches of the
hyperbola. The endpoints of the transverse axis are called the vertices of the hyperbola.
The transverse axis passes through the foci and has the length 2a.

The rectangle whose diagonals lie along the asymptotes and with a side passing through
a vertex is called the central box.

The line segment through the center, perpendicular to the transverse axis, with end-
points on the central box is the conjugate axis. Its endpoints are the co-vertices.

The standard form of a hyperbola with a horizontal or vertical transverse axis is one of
the following:

Horizontal Transverse Axis Vertical Transverse AXxis
(z—h? -k _ -k (@—h? _
a? b2 a2 b2
Asymptote Asymptote
QAN : y=ole—h+k Asymptote : 7+’ Asymptote
R : y=—@ =0+ 5 (Y =te—h)+k

: > : Center
, 7 Center: S L/ : AN B
4 (h,k) = ~ 7/ o \ ’

In the equations of standard form and figures above, b is defined by b = V¢? — a2.

NG

-

L7 Equations of Asymptotes

In standard form equation of a hyperbola, replacing 1 with 0 and solving for y by factoring
yields the equations of the asymptotes. Conversely, the product of the equations of the
asymptotes is differ by a constant with an equation of the hyperbola.
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|_Example 7.3.1. A hyperbola has the equation 922 — 16y = 121. Find the vertices, foci,
length of the transverse axis, and asymptotes. Sketch the graph.

Solution. Rewriting the equation in standard form, we have

CL‘2 y2
[N
9 16
Thus, the center is at (0,0),
a=_, and b=

The vertices are located a units from the center along the transverse axis. Since the
transverse axis is horizontal, the vertices are at

(=_ 0.
To find the foci, we use the relationship c? = a2 + b2 to find c:

/121+121
c=4|—+— = )
9 16 —_—

Since the transverse axis is horizontal, the foci are at
(£_ ,0).
The length of the transverse axis is 2a =

The equations of the asymptotes are given by

L iy S

To sketch the graph, we first plot the center, vertices, and foci. Then we draw the
asymptotes as dashed lines through the center. Finally, we sketch the two branches of
the hyperbola, approaching but never touching the asymptotes.

Y
6 - 7
N ’
B 5 - =~
N ’
* 4 .
N ’
\\ 3 1 /l
\ ’
\\ 2 /l
N ’
\1 1 //
N 2
—
~8-7-6-5-4-3-2-19]"1 2 3 5 6 7 8 T
7 .
’ .
1’72 B \\
’ .
/l =3 T \\
’ N
/l -4 \\
’ N
/l =51 \\
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(@ Latus Rectum and Directrix of a Hyperbola

The latus rectum of a hyperbola is a line segment perpendicular to the transverse axis
that passes through a focus and has endpoints on the hyperbola. The length of the latus
rectum is 222,

For a hyperbola centered at (h, k), the endpoints of the latus rectum through the foci are:

2
. (h +ec,k+ (b—) ) if the transverse axis is horizontal.
a

b2 . . :
. (h + (—) Jk+ c) if the transverse axis is vertical.
a

Plotting these endpoints along with the center, vertices, and foci gives a more accurate
sketch of the hyperbola.

An ellipse can also be defined as the set of points where the ratio of the distance to a
focus and the distance to its corresponding directrix is constant, the eccentricity e. The
directrices of an ellipse are the two lines perpendicular to the transverse axis and located
a distance of “—02 from the center.

Example 7.3.2. Find the vertices, foci, length of the transverse axis, and asymptotes of
the hyperbola z2 + 2z — 9y + 10 = 0.

Solution. Completing the square for x and rewriting the equation in standard form gives
(z2 + 22+ 1) — 9% =

oo B DT

Thus, the center is at (—1,0),

a=1  and b=+/ =
The vertices are located a units from the center along the transverse axis. Since the
transverse axis is horizontal, the vertices are at
(-<-1+  ,0)=_  , and (11— 0)=
From the equation c? = a2 + b2, we find

/ 10
=4/10+ — = .
c + 9 o

Since the transverse axis is horizontal, the foci are at
(-1+ 0=, and (-1—-_ 0=
The length of the transverse axis is 2a =

The equations of the asymptotes are given by

y=i<§>(w—h)+k=:&(i)(:¢+l). J
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|_Example 7.3.3. Find the equation of the hyperbola with vertices (+3,1) and foci (+4,1).

Solution. The center is the midpoint of the foci:

2 - (07 —>'
The distance from the center to a vertex is
a =

The distance from the center to a focus is
CcC =

Using the relationship ¢? = a? + b2, we find b2:
2=c?2—a?>=16—9 =
Since the foci and vertices are on the same horizontal lines y = 1, the transverse axis is
horizontal, the equation of the hyperbola is
z?  (y—1)?
— 9 =1. J
Example 7.3.4. Find an equation of the hyperbola with vertices (+2,1) and asymptotes
Y= :I:%a: + 1.

Solution. (Using the center, a, and b). The center is the midpoint of the vertices: (0,1). The
distance from the center to a vertexis a =

From the slope of the equations of the asymptotes, we have

a 1
c 2
CcC =

Using the relationship b2 = ¢? — a2, we find b2:

o- (3 4

Since the vertices are on the horizontal line y =1, the transverse axis is horizontal.

Therefore, the equation of the hyperbola is

2 (y—1)°

T —-L J

Solution. (Using equations of asymptotes). Since the asymptotes are given by (y —1) +
+3z = 0, an equation of the hyperbola is of the form

((y—l)-l-%x)((y—l)—%x) =k

for some constant k— = 0. Since (2, 1) is a vertex, pluging this point into the equation gives

1 1
k=1—-14+--2]|([1—-1—=-2]| = .
( 3 )( 5 ) —

Thus, an equation of the hyperbola is

%2—(11—1)2=1~ J
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Exercises
]

#7 Exercise 7.3.1. An equation of a hyperbola is given. Find the center, vertices, foci, and asymptotes
of the hyperbola. Sketch the graph.

) 2L 2) £z 3) 2522 —9y2 —4 =0

1) Center: (0,0); Vertices: (£3,0); Foci: (:i:\/ﬂ, 0); Asymptotes: y = iga:.
Answer: 2) Center: (0,0); Vertices: (0, +3); Foci: (0,£+/34); Asymptotes: y = +3z.

3) Center: (0,0); Vertices: (+2,0); Foci: (i%,o); Asymptotes: y = +3z.
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4’ Exercise 7.3.2. Find an equation for the conic section with the given properties.
1) The hyperbola with foci (0, £3) and vertices (+2,0).
2) The hyperbola with foci (+5,1) and asymptotes y = :t% + 1.

12
Answer: 1) & — L —1, 2) o WU,

9
5 25 25
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#’ Exercise 7.3.3. Find an question for the conic section with the given graph.

Y

ot & N o ©

~

.22y
Answer: e — 355 =1L
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8.1 Sequences

Definition 8.1.1 (Sequences)

A sequence is an ordered list of numbers or equivalently a function whose domain is
the set of positive integers or right tail truncated set of integers. Each number in the
sequence is called a term. Sequences can be finite or infinite. A sequence is often
denoted by {a,, }, where a,, is called the n-th term or general term of the sequence and
n is called the index of the sequence.

@ Sequences as Functions

A sequence can be viewed as a function whose domain is the set of positive integers Z+ =
{1,2,3,---} oratruncated or extended set of integers {m,m + 1, m + 2, ---} for some integer
m. Thus, a sequence {a,,} can be defined by a formula for its n-th term a,, = f(n) for some
function f defined on Z* or {m,m +1,m + 2,---}.

_Example 8.1.1. Find the first five terms and the 100-th term of the sequence defined by
each formula.

_1)"
1) a, =2n%-1 2) r, =S5

Solution. To find a term in a sequence defined by a formula, we substitute the index of
the term into the formula.

1) For a, = 2n% — 1, the first five terms are a; = 1, a, = 7, a3 = 17, a, = 31, a5 = 49, and
the 100-th termis a;op = 2- 1002 — 1 =

2) Forr, = EY" the first five termsarer; = -3, r, =% p, =1 p — L o — _ 1 3nd
n 2 1 27 2 4' '3 8! "4 16’ ' 5 32

the 100-th term is ry oy = 5. J

Example 8.1.2. Find the n-th term of a sequence whose first several terms are given. The
ellipsis --- indicates that the pattern continues.

1 %I ?_ll %I %I o 2) _21 4! _81 16! o

Solution. To find the n-th term of a sequence from its first few terms, look for a pattern
often by examining differences or ratios between terms.

1) Observe that the numerator of each term increases by 1 starting from 1, and the
denominator also increases by 1 starting from 2. Thus, the n-th term is a,, = ;25

2) Observe that the absolute value of each term is a power of 2, and the sign alternates.
Thus, the n-th termisa,, = (—1)" - 2". J
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Definition 8.1.2 (Recursive Sequences)

In some sequences, the n-th term may depend on some or all of the terms preceding it.

Such a sequence is called recursive sequence. .
-

Example 8.1.3. Find the first five terms of the sequence defined recursively by ¢, = 1 and
a, =3(a,_, +2).

Solution. To find the first five terms of the sequence, we use the recursive formula step

by step.

a; =1, ag=3(a;+2)=3(  +2)=_ | a3 =3(ay+2)=309+2)=_
ag=3(a;+2)=3(_  +2)=_ | a5=3(ay+2)=3(105+2) = 321

Thus, the first five terms are 1, 9, 33, 105, and 321. J

F(ample 8.1.4. Find the first seven terms of the Fibonacci sequence defined recursively
by F, =1, F, =1and
Fn :Fn71+Fn72'

Solution. To equation for the n-th term shows that the n-term is the sum of previous two

terms in the Fibonacci sequence. Thus, we have

Fy=F,+F; = + = :
F6:F5+F4: + = )
I7 = Fg + Fy = + =

Therefore, the first seven terms of the Fibonacci sequence are 1, 1, 2, 3, 5, 8, and 13.

Definition 8.1.3 (Partial Sums)
For the sequence {a,}, thesum S,, = a; + a, + -+ + a,, for first n terms is called the n-th

partial sum. The sum of the entire sequence is called the sum of the sequence. .
- J
Example 8.1.5. Consider the sequence {a,} defined by a, = 1 — -1 Find the partial

sums S; and the n-th partial sum S,,.

Solution. To find the partial sums, we evaluate the sum of the first n-terms
1 1 1 1 1 1
s=(1-2)+(G-3)+(G-3)
()1 (4) ) 414
2 2 3 3 4 4 —
1

Note that the terms cancel out in pairs except the first term 1 and the last term ——=.
Thus, the n-th partial sum is

1 n
S":a1+a2+m+a”:1_n+1:n—i-l' J
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Definition 8.1.4 (Sigma Notation)

Given a sequence {a, } and integers p < ¢, the sum a,, +a,,; + -+ q, is often denoted
by the summation notation as follows:

q
> a
k=p

where the Greek letter sigma )  means to sum expressions up, k is the index of
summation, and q is the upper limit of summation, p is the lower limit of summation,
and the k-th summand a,, is the k-th term of the sequence.

L]
A J

Example 8.1.6. Find the sum.
5 5

1) k2 2) 1

& 2%

J=3

Solution. From the definedion of summation notation, we have

5
o R=12422432 442457 =
k=1

and

=

Lol 11
345 —— J

F(ample 8.1.7. Write each sum using sigma notation.
1) 13423 +43 4. 478 2) VI+V3+V5+-+V13
Solution. To write the sums using sigma notation, we identify the pattern of the terms.

1) The terms are cubes of integers from 1 2) The terms are square roots of odd inte-
to 7. Thus, the sum can be written as gers from 1 to 13. Thus, the sum can be

Z k3. written as
k=

S VEoT

j=

Proposition 8.1.5 (Properties of Partial Sums)
Let {a,,} and {b,} be two sequences.

n

1) Z(cak-l-dbk):cZak-l-d
k=1 k

n

b, for any constants ¢ and d.
=1

Mo T
=
Il
]
=
+
]

2) a, forany 1 < m < n.

k=1 k=1 k=m+1 .

Proof. The proofs follow directly from the definitions of summation notation and partial
sums, and rules of arithmetic. O
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Exercises
]

#/ Exercise 8.1.1. Find the first 5 terms of the sequence with the given n-th term.

D a, = 2) a,=(-1)"%

Answer: 1) 1,3,9,18, 25 2) 2,2 84 32
# Exercise 8.1.2. Find the first 5 tferms of the recursive sequence.

D a,=a,1+2n—1La =1 2) a,=a, 1 —a, 5 a, =1and ay =2

Answer: 1) 1,4,9,16,and 25. 2) 1,2, —1, 3, and —4.
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#’ Exercise 8.1.3. Find the partial sum S, for the sequence.

1) (k%) 2 {7}

Answer: 1) S, =100. 2) S, =2
#’ Exercise 8.1.4. Write each sum using sigma notation.

) 13433 +5% 4+ 4118 2) V1+V2+V3+--4 V10

5 10
Answer: 1) > (2k+1)3. 2) > 7.
k=0 Jj=1
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4’ Exercise 8.1.5. Find the sum.

10 T 3. (—a2)i
D3 (k- 1) D5 V3G

. 4
Answer: 1) 285. 2) 1229 3) 14
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8.2 Arithmetic Sequences

Definition 8.2.1 (Arithmetic Sequences)

An arithmetic sequence is a linear function whose n-th term is a,, =d(n —m) +a
where the slope d is called the common difference.

mr

If we denote the first a, as a, then the n-th term of an arithmetic sequence is given by
a, =a+ (n—1)d, where d = a;,, — a;, for any positive integer k. .
- J

Example 8.2.1. Find a,, for the arithmetic sequence
9,4,—1,—6,—11, -

Solution. Because the sequence is arithmetic, its a,, term can be written as a,, = a; +
d(n —1), where d = a;; — q,, for any positive integer k. Here,
a; =9 and d= — = —5.

Thus, the n-th termis J

a,=9—-5n—1)=

F(ample 8.2.2. The 11-th term of an arithmetic sequence is 32, and the 19-th term is 72.
Find the 100-th term.

Solution. Let a,, be the n-th term of the arithmetic sequence. Then, we have
ay; = a+10d = 32
a1 = a4 18d = 72.
Solving the system of equations for a and d, we get
d= and a = —18.
Therefore, the n-th term of the arithmetic sequence is
a,=—-184+(n—-1)-5=

Thus, the 100-th term is
alOO :5'100_23:

Theorem 8.2.2 (Partial Sums of Arithmetic Sequences)
For the arithmetic sequence a,,, the n-th partial sum is

!

k=1
The sum of n constant numbers is

n

E ¢ = cn, where c is a constant.
k=1

The sum of the first n positive integers is

L 1
k=1 2
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n
Proof. The formula > ¢ = cnis clear.
k=1

Note that
ap+a, =a,+k—-1)d+a;+(n—k—1)d=2a, + (n—2)d =a; +a,,
forany 1 < k <n.Thus,
25, = (ay +a,) + (ag + a,_1) +(a, +a;) = n(a; +ay,).

. a; + a,
Sn—n< 5 )

In particular, when d =1 and a, = 1, we have a,, = n, and

Sn:n(l—i—n) n(n+1).
2 2

Therefore,

CLJ Remark

The formula for the sum of the first n positive integers can also be derived using induction
or geometrically by arranging dots into a triangle (see for example https://artofproblem
solving.com/wiki/index.php/Proofs_without_words).

Example 8.2.3. Find the sum of the first 50 odd numbers.

Solution. The sequence of the first 50 odd numbers is an arithmetic sequence with the
first term a; = 1 and the common difference d = 2. Thus, the 50-th term is

5o =1+ (50 —1)-2 =
Therefore, the sum of the first 50 odd numbers is

s =0( =) = |

|_Example 8.2.4. Find the following partial sum of an arithmetic sequence:
34+7+114 15+ -4 159.

Solution. The sequence 3, 7, 11, 15, --- is an arithmetic sequence with the first term a; =
3 and the common difference d = . To find the number of terms, we solve for n in
the equation

a, =3+ (n—1)-4=159.

Thus, we have
(n—1)-4=156

n—1=239
n = 40.
Therefore, there are 40 terms in the sequence. Thus, the sum of the sequence is
3+ 159
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Chapter 8 Sequences and Series 8.2 Arithmetic Sequences

anmple 8.2.5. How many terms of the arithmetic sequence 5, 7, 9, - must be added to
get 5727

Solution. Because the sequence is arithmetic witha; =5and d = , we have
a,=5+2(n—1)=
The sum of the first n terms is

Sn:n<al+_an> :n(5+(2n—|—3)) _

2 2 —
To find how many terms must be added to get 572, we solve for n in the equation
n(n +4) = 572.

Thus, we have
n?+4n—572=0

(n+26)(n— )=20
n= because n > 0.
Therefore, 22 terms of the arithmetic sequence must be added to get 572. J
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Exercises

#’ Exercise 8.2.1. Determine whether the sequence is an arithmetic sequence or not and find the
n-th ferm of the sequence.

D1-v21-2v21-3vV2 1—4V2, -
2) V3.3 33,09, -

3 5
3)1,-3,2-23, -

Answer: 1) Yes,a, =1—nv2. 2) No. 3) No.

# Exercise 8.2.2. Find the partial sum of an arithmetic sequence.
1 2

4 5
414+ =-4+Z4...433
3+3+ +3+3+ +

Answer: Sy, = 1650.
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4’ Exercise 8.23. How many terms of the arithmetic sequence 3, 7, 11, --- must be added to
get 1707

Answer: 9 terms.
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8.3 Geometric Sequences

Definition 8.3.1 (Geometric Sequence)
A geometric sequence is an exponential function whose n-th term is

— n—m
a, =a,T y

where r is the common ratio of the sequence.

If we denote the first term a, as a, then the n-th term of a geometric sequence is given by

— n—1
a, = ar .

NG

-

Example 8.3.1. Find a, for the geometric sequence.

1) 2, —10, 50, —250, 1250, ---. 2) 1,4, L L, L

Solution. Because the sequence is geometric, its n-th term can be written as a,, = a;r" !,
where r = 2:21 for any positive integer k.
ag

1) Here,
a; =2 and r==——7=-5.
Thus, the n-th term is
a, =2(=5)"1 =
2) Here,
1
aq an r 3

Thus, the n-th term is B
a, = 1(1> = .
SO B

1701

Example 8.3.2. The third term of a geometric sequence is &, and the sixth term is 120t

Find the fifth term.

Solution. Let a,, be the n-th term of the geometric sequence. Then, we have
63 1701
QIZ and a6:ar5:—32 .

Dividing the second equation by the first, we get
1701

as = ar

Note that a; = asr. Thus, the fifth term is
1 1701

589
g = Qg+ — = —(——— = —".
5T 6, 32 — 16 J

@ 214 [ 224 PreCalculus Workbook


https://creativecommons.org/licenses/by-nc-sa/4.0/

Chapter 8 Sequences and Series 8.3 Geometric Sequences

Theorem 8.3.2 (Partial Sums of Geometric Sequences)

Given a geometric sequence whose n-th termis a,, = ar™"!, the n-th partial sum is

L N a(l—r")
Sn = Z(I’f’k 1 — 1—_7"
k=1

Proof. Consider the product
S,1—r)=S,—rS,.
We have
S, =a+ar+ar’+-+ar" 1
and
rS, = ar + ar? + ar® + - + ar™.

Thus, we get

S,—rS,=a—ar"=a(l—1r").
Therefore,
B a(l—rm)
S, = T

(@ Relation between Arithmetic and Geometric Sequences

The logarithm of a geometric sequence forms an arithmetic sequence. If {a,, } is geometric
with a,, = ar™!, then {log(a,,)} is arithmetic with
log(a,,) = log(a) + (n — 1) log(r).
Conversely, the exponential of an arithmetic sequence forms a geometric sequence. If
{b,} is arithmetic with b,, = d(n — 1) + b, then {r’ } is geometric with
rbn = pb. (rd)n_l.

Example 8.3.3. Find the following partial sum of a geometric sequence:
14+4+16+ -+ 4096.

Solution. The sequence 1, 4, 16, --- is a geometric sequence with the first term a; = 1 and

the common ratior = . To find the number of terms, we solve for n in the equation
a, =1-4"1 = 4096
471 = 4096
In(4096)
T (@) ——
n =

Thus, the sum of the sequence is
1(1—47)
YT TImg T —— |
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Example 8.3.4. Find the sum

O

k=1

Solution. Note that when

2\° 2
a; = (—§> =1 and r=-3g

Therefore, using the formula for the partial sum of a geometric sequence, we have
7
L)
7T — — .
) a

|Eample 8.3.5. Find the sum

> ()

5
k=1
Solution. Note that when

5\ ! 5 5
a; = (——) = —= and r=—=

3 3 3
Therefore, using the formula for the partial sum of a geometric sequence, we have
5 5)°
o 3(-68)
5 = 5 =
1—(=3)

Definition 8.3.3 (Infinite Series)
An expression of the form

o0
Zak=a1+a2+a3+a4+---
k=1

is called an infinite series.

Definition 8.3.4 (Convergence and Divergence of Geometric Sequences)

oo
An infinite series > a, is said to be convergent if the sequence of partial sums S,, =
n k=1
a;, converges to a finite number. Otherwise, the series is said to be divergent.
k=1

Given a geometric series

oo

E arkl =q + ar + ar? + ar + -
k=1

1) If |r| < 1, then the series converges to S =

—T

2) If |r| > 1, the series diverges.
-

NG
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|_Example 8.3.6. Determine whether the infinite geometric series is convergent or diver-
gent. If it is convergent, find its sum.

1) 1244 _ 8 2) S 1. (3\k 3) S pgh!
)1-5+m—ms+ ) X3 (3) ) Ll <1

Solution. To determine whether the infinite geometric series is convergent or divergent,
we identify the first term a and the common ratio r of each series.

1) Here,
2
=1 d S —
a al T 5
Since |r| < 1, the series converges to
1
S = = =
2 —_—
1-(=3)
2) Here,
1 3
a=7 and r=s;

Since |r| < 1, the series diverges.

3) Here,
a=0p and r=gq.
Since |g| < 1, the series converges to
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Exercises

#’ Exercise 8.3.1. Find the n-th ferm of the sequence and determine whether the sequence is a
geometric sequence, or nheither.

1) V22 2v24, -
2) —1, % —g, 2 .

Answer: 1) a, = \/5(\/5)"71 =v2".Yes. 2) a, = FL2 No.

# Exercise 8.3.2. Find the partial sum of a geometric sequence.

) Lplplg ooy 1 2) S g (—p)k-1
2 T12T38T 16 1024 kZa( )
-1

Answer: 1) S, =103 2) § = 0(171(;2)")

@ 218/ 224 PreCalculus Workbook



https://creativecommons.org/licenses/by-nc-sa/4.0/

Chapter 8 Sequences and Series Exercises

#/ Exercise 8.3.3. Determine whether the infinite geometric series is convergent or divergent. If it
is convergent, find its sum.

1) 1—3 4251254 . 2) ig.(_ )¢ 3) Z

o o k1

N

2+2

Answer: 1) Divergent. 2) Convergent, S =2. 3) Convergent, S =

2+1
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8.4 The Binomial Theorem

Theorem 8.4.1 (Binomial Theorem)
The binomial theorem states that for any positive integer n,

(a4+b)" = zn:(;;L)a"kbk,

k=0
where () are binomial coefficients and defined as
(n)_ n! n-(n—1)--(n—k+1)
k) Kn—k!  k-(k—1)---2-1
wheren! =n-(n—1)----2-1is the factorial of n. In particular, > (7) = 2.

k=0

Proof. To get the term a™*b* in the expansion of (a + b)" corresponds to choosing k factors
of b from n factors of (a + b). The number of ways to choose k factors of b from n factors
can be counted first with an order, there are n(n —1)--«(n — k + 1) ways, then dividing by
the number of ways to arrange k factors of b, which is k(k — 1)---2 - 1. Thus, the coefficient
of a™*bk is (7). O

P Properties of Binomial Coefficients

The binomial coefficients have the following special values:

0= (O=(m)=n ()= ()=

They also satisfy the following relations:
n n n—1 n—1
(r) - (n—r) - (r—l) + ( T )7
which can be derived from the definition of binomial coefficients or by comparing coeffi-
cients in the expansion of

i(:)a""“b’“ —(a+b)"=(a+b)(a+b) " = (a+ b)il((” N 1))an_1_kbk.

k=0 k=0
The relations can be visualized using Pascal’s triangle, where the number in each position
is the sum of the two numbers directly above it.

Pascal’s Triangle with 8 rows — The number in the n row, k-th column is (Z)

1
1 1
1 2 1
1 3 3 1
1 4 6 41
1 5 10 10 5 1
1 6 15 20 15 6 1
1 7 21 35 35 21 7 1
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|_Example 8.4.1. Calculate the binomial coefficients.
" (5) 2 (7)) 3 ()
3 4 97
Solution. To calculate the binomial coefficients, we use the definition of binomial

coefficients. When k& is greater than %, we use the relation (7) = (,.",) to simplify the
calculation.

1) We have
(7)_ 765
3) 3(7-3)! 3.2.1 —
2) We have
(50)_ 500  50-49-48-47
4) 4(50—4) 4.3.2.1 @ —
3) We have
(100) _ (100) _ 1000 100-99-98
97 ) \ 3 /) 3(100-3)  3.2-1  —— J

|_Example 8.4.2. Use the binomial theorem to expand (z + y)°.

Solution. To expand (z + y)°, we use the binomial theorem:
5
)
5 _ 5k, k
(z+7v) kzzo(k>x y~.
As n = 5is not large, using the definition and properties of binomial coefficients directly
or the Pascal’s triangle, we have

(0)=1 ()= () — (5)-— ()-— ()-—

Therefore, we get
(z +y)° = 2° + 5xty + 1023y + . J

|_Example 8.4.3. Use the binomial theorem to expand (vz —1)".
Solution. When n = 4, the binomial coefficients are

(o) =1 ()= () =— ()= (1) -»

Therefore, using the binomial theorem, we have

(VE-1)" = i(i) (Vo) (1)t

k=0
-z — 4\/53 +

_ , J
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|_Example 8.4.4. Find the term that contains z® in the expansion of (2z — 1)10.

Solution. To find the term that contains z® in the expansion of (2z — 1)19, we use the
binomial theorem:

(22 —1)10 = Z( 5 )(23:)10k(—1)k.
k=0
The term that contains z® corresponds to 10 — k = , or k = 5. Thus, the term is

(5 ) eor ey
5
Using the properties of binomial coefficients, we have
10y 100  10-9-8-7-6
(5) 5(10—-5)! 5-4-3.2-1 ——
Therefore, the term that contains z° is

|

Solution. To find the term that contains z? in the expansion of (z® — %)12, we use the
binomial theorem:
12

<x3 — 1)12 = Z<12> (23)" (—1>k = i (=D
T ok T k=0
The term that contains z2 corresponds to 3(12 — k) — k = ,0rk = . Thus, the

z? term is
(2 Jewree i

|_Example 8.4.5. Find the term that contains z? in the expansion of (z® — %)12.
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Exercises

#’ Exercise 8.4.1. Evaluate the expression.

D (3) 2 (3)+(3) ) ()

Answer: 1) 10 2) 15 3) 32

# Exercise 8.42. Expand the expression.

1) (22 +y)° 2) (z—%)°

Answer: 1) 642° + 1922%y + 240zy? + 1602°y® + 602%y* + 12295 + 0. 2) 2® — 522 + 22— 4 5 —

210
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4’ Exercise 8.43. Find the ferm containing z° in the expansion of (z + 3)°

Answer: 60480z,

#/ Exercise 8.44. Find the term containing no z in the expansion of (4z + %x)lo.

Answer: 8064.
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